Reference: | 1. Dezhong, W. Rachev S.T., Fabozzi F.J. (October 2006).Pricing Tranches of a CDO and a CDS Index: Resent Advances and Future Research. Working paper. 2. Dezhong W., Rachev S.T., Fabozzi F.J. (November 2006). Pricing of Credit Default Index Swap Tranches with One- Factor Heavy-Tailed Copula Models. Working paper. 3. Kalemanove, A., Schmid, B., and Werner, R (spring2007). “The Normal Inverse Gaussian Distribution for Synthetic CDO pricing.” The Journal of Derivatives, Vol. 14, pp. 80-93. 4. Karlis, D. and Papadimitriou, A. (2004). Inference for the Multivariate Normal Inverse Gaussian Model. Working paper 5. Hull, J. and White, A. (winter 2004) “Valuation of a CDO and an n-th to Default CDS without Monte Carlo Simulation.” The Journal of Derivatives, Vol. 12, pp. 8- 23. 6. Li, D.X. (April 2000). On Default Correlation: A Copula Function Approach. Working Paper. 7. D. O’Kane and L. Schloegl., M. (2001). Modeling Credit: Theory and Practice. Quantitative Credit Research, Lehman Brothers. 8. Black, Fischer and John C. Cox, "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions", Journal of Finance, Vol. 31, No. 2, (May 1976), pp. 351- 367. 9. Merton, R. C (1974) . On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance, 29, pp. 449-470. 10. O.E. Barndor®-Nielsen. (1978). Hyperbolic distributions and distributions on hyperbolae. Scandinavian. Journal of statistics, 5, 151-157. 11. Karlis. D. (2000). An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution. Statistic & Probability Letters , 57, 43-52. 12. 林聖航(民101)。探討合成型抵押擔保債券憑證之評價。國立政治大學統 計學系碩士論文,台北市。 13. 邱嬿燁 (民 97) 。探討單因子複合分配關聯結構模型之擔保債權憑證之 評價 。國立政治大學統計學系碩士論文,台北市。 |