政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/67587
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114401/145431 (79%)
造訪人次 : 53156315      線上人數 : 862
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/67587
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/67587


    題名: 貝式模型平均法在預測分析之應用
    The Application of Bayesian Model Averaging for Predictive Analysis
    作者: 郭東穎
    貢獻者: 翁久幸
    郭東穎
    關鍵詞: 貝式平均法
    預測分析
    logistic regression
    occam`s window
    laplace approximation
    Bayesian Model Averaging
    日期: 2013
    上傳時間: 2014-07-21 15:36:29 (UTC+8)
    摘要: 當論及二元變數的分類問題,邏輯斯迴歸模型是個常用的典型模型。傳統的邏輯斯模型建置,往往會面臨模型選擇的問題,其方法例如逐步迴歸 (stpewise) 選取法。然而,在這種以單一模型作為最終架構的方式可能會遇到某些困難;例如模型不確定性,以及當多個模型在選取準則方面皆表現良好,而難以抉擇該使用何者為最終模型的問題。在本文中,我們引入貝式模型平均法 (BMA) 作應用,希望不僅能夠降低這些問題的影響,並且期望能夠增進模型在預測上面的表現,此外,透過Occam’s window以及Laplace近似法,能夠將貝式模型平均法方法中較複雜的運算變得容易且更有效率。最後,我們對CARVANA的車輛資料做實證分析,運用了交叉驗證模擬決策點、以及誤差抽樣等分析技巧,分別針對貝式模型平均法、逐步選取法以及未做選取法來建立模型,進而比較。從實證結果顯示,在F-measure的評估架構下,貝式模型平均法以及精確率 (precision) 的表現較佳,而逐步迴歸 (stpewise) 選取法則在回應率的 (recall) 上的表現較佳,說明BMA方法不僅能夠改善先前的問題且在某些情況下,能夠提升模型預測上面的精確性。
    Logistic regression serves as a classical model to be used when it comes to the binary classification problem. In logistic regression, it is common to choose one model by some selected process such as stepwise method. However, using single model structure would confront with some problems such as model uncertainty and the difficulty in choosing among the models when they perform similarly. In this thesis, we aim to take uncertainty into consideration and refine the predictive performance via Bayesian Model Averaging (BMA). BMA, which considers all possible models, attempts to solve the uncertainty by rendering the posterior probability of models as the weight to average. Additionally, Occam’s window and Laplace approximation would be employed to be more efficient in calculation process. Finally, Cavana vehicle auction data would be demonstrated and applied by BMA method, stepwise model and full one. Equipped with the techniques including under-sampling and cutting-point simulation. For the performances of F-measures and precision, BMA method is better. While stepwise model work out for recall assessment. The result unveils that Bayesian Model Averaging approach not only makes up model uncertainty but also enhances the precision of prediction in some situations.
    參考文獻: Berger, J. O., and Delampady, M. (1987). Testing precise hypotheses. Statistical science, 317-335.
    Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition 30, 1145-1159.
    Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science 16, 199-231.
    Chen, C., Liaw, A., and Breiman, L. (2004). Using random forest to learn imbalanced data. University of California, Berkeley.
    Cortes, C., and Mohri, M. (2004). Confidence Intervals for the Area Under the ROC Curve. In Nips.
    Dickinson, J. P. (1973). Some statistical results in the combination of forecasts. Journal of the Operational Research Society 24, 253-260.
    Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems, 1-15: Springer.
    Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society. Series B (Methodological), 45-97.
    Fernandez, C., Ley, E., and Steel, M. F. J. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics 100, 381-427.
    Fleming, T. R., and Harrington, D. P. (1991). Counting processes and survival analysis. 1991. John Wiley&Sons, Hoboken, NJ, USA.
    Grambsch, P. M., Dickson, E. R., Kaplan, M., Lesage, G., Fleming, T. R., and Langworthy, A. L. (1989). Extramural cross‐validation of the mayo primary biliary cirrhosis survival model establishes its generalizability. Hepatology 10, 846-850.
    Hoeting, J., Raftery, A. E., and Madigan, D. (1996). A method for simultaneous variable selection and outlier identification in linear regression. Computational Statistics & Data Analysis 22, 251-270.
    Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical science, 382-401.
    Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773-795.
    Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, 1137-1145.
    Leamer, E. E., and Leamer, E. E. (1978). Specification searches: Ad hoc inference with nonexperimental data: Wiley New York.
    Lemeshow, S., and Hosmer, D. (2000). Applied Logistic Regression (Wiley Series in Probability and Statistics: Wiley-Interscience; 2 Sub edition.
    Madigan, D., and Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam`s window. Journal of the American Statistical Association 89, 1535-1546.
    Madigan, D., York, J., and Allard, D. (1995). Bayesian graphical models for discrete data. International Statistical Review/Revue Internationale de Statistique, 215-232.
    Markus, B. H., Dickson, E. R., Grambsch, P. M., et al. (1989). Efficacy of liver transplantation in patients with primary biliary cirrhosis. New England Journal of Medicine 320, 1709-1713.
    Merlise, A. (1999). Bayesian model averaging and model search strategies. Bayesian statistics 6, 157.
    Miller, A. (2002). Subset selection in regression: CRC Press.
    Monteith, K., Carroll, J. L., Seppi, K., and Martinez, T. (2011). Turning Bayesian model averaging into Bayesian model combination. In Neural Networks (IJCNN), The 2011 International Joint Conference on, 2657-2663: IEEE.
    Posada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic biology 53, 793-808.
    Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83, 251-266.
    Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133.
    Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association 92, 179-191.
    Regal, R. R., and Hook, E. B. (1991). The effects of model selection on confidence intervals for the size of a closed population. Statistics in medicine 10, 717-721.
    Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 111-147.
    Tierney, L., and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81, 82-86.
    Tsao, A. C. (2014). A Statistical Introduction to Ensemble Learning Methods. 中國統計學報 52, 115-132.
    Volinsky, C. T., Madigan, D., Raftery, A. E., and Kronmal, R. A. (1997). Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. Journal of the Royal Statistical Society: Series C (Applied Statistics) 46, 433-448.
    Wang, D., Zhang, W., and Bakhai, A. (2004). Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Statistics in medicine 23, 3451-3467.
    Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of mathematical psychology 44, 92-107.
    Zhu, M. (2004). Recall, precision and average precision. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo.
    描述: 碩士
    國立政治大學
    統計研究所
    101354007
    102
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0101354007
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    400701.pdf1311KbAdobe PDF2367檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋