English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51042028      Online Users : 909
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 教育學院 > 教育學系 > 學位論文 >  Item 140.119/66503
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/66503


    Title: 認知診斷模式在英語簡單句之驗證與應用
    The Verification and Application of Cognitive Diagnosis Models on English Simple Sentences
    Authors: 趙珮晴
    Contributors: 余民寧
    趙珮晴
    Keywords: 英語簡單句
    補救教學
    認知診斷模式
    English simple sentence
    remedial instruction
    cognitive diagnosis model
    Date: 2013
    Issue Date: 2014-06-04 14:46:01 (UTC+8)
    Abstract: 英語簡單句的認知診斷模式測驗,具有積極的教育意義,其訊息可以協助國小學生瞭解自己,也可以幫助國中小學校進行補救教學,促進國中英語課程的銜接。本研究對象為429位基隆市國民小學六年級學生,自編具有英語簡單句六個認知屬性的試題及其相關影響因素的測量問卷,研究發現如下:

    壹、古典測驗理論之試題分析探索題目和相關影響因素:
    一、英語簡單句題目,具有內部一致性信度和選項誘答力。
    二、英語簡單句題目,以2個或3個認知屬性的題目比僅有1個認知屬性的題目具有難度與鑑別度。
    三、自我效能、內在動機題目,具有良好的建構效度和內部一致性信度。

    貳、以認知診斷模式分析英語簡單句測驗:
    一、對於不良試題,認知診斷模式和古典測驗理論之試題分析結果可相呼應。
    二、英語簡單句題目以G-DINA模式進行分析較為適當。
    三、DINA模式和G-DINA模式的分析結果,大致相同。
    四、僅有1個認知屬性的題目,有較高猜測參數,可能需要再檢視Q矩陣結構或修改試題。
    五、認知屬性中,人稱代名詞單複數的判斷之精熟程度最高,而現在式一般動詞在單數或複數人稱上的使用之精熟程度最低。
    六、精熟組型中,有幾乎一半的學生均具備全部的認知屬性;但是,也有約略二成的學生不具備任一認知屬性。

    參、女學生、有課後英語文課程、高自我效能和高內在動機者,具有較多認知屬性個數的精熟組型

    最後,本研究根據研究結果,提出供教育相關當局與人員之教學與研究建議。
    Reference: 王成元(2011)。以認知診斷模式分析臺灣與亞洲四國(地區)八年級學生在TIMSS 2007的數學學習成就表現:以DINA模型為例。國立臺灣師範大學數學系碩士論文,未出版,臺北市。
    白雲霞(2012)。補習與教學型態對數學低成就生之文字題表現的影響。教育實踐與研究,25(2),1 -33。
    仲華(2005a)。如何寫英文。臺北市:華人世紀。
    仲華(2005b)。中文變英文練習手冊。臺北市:華人世紀。
    全民英檢教師資源網(無日期)。句型分類與功能-Wh問句。2013年4月11日,取自:http://www.lttc.ntu.edu.tw/teacher/Reading/medium/L2.htm
    托福測驗(2013)。關於托福測驗(TOEFL)。2013年3月20日,取自http://www.toefl.com.tw/new-about-02.jsp
    何易(1998)。英文文法寶典。臺北市:千華。
    余民寧(2011)。教育測驗與評量-成就測驗與教學評量(第三版)。臺北市:心理。
    呂淳郁(2011)。結合建構反應題之認知診斷模式估計成效-以國小體積、容量與容積單元為例。國立臺中教育大學教育測驗統計研究所碩士論文,未出版,臺中市。
    李振清(2008)。大學指考翻譯與作文彰顯的英語文能力培養之道。2013年3月20日,取自http://blog.udn.com/s222460428/3296900
    林原宏(2006)。解題規則次序分析方法及其實證研究。教育與心理研究,29(3),599-619。
    林原宏、郭竹晏(2010)。國小學童數學直覺法則之認知評量分析與性別差異探討。教育研究與發展期刊,6(4),105-136。
    林麗芬(2009)。學校與補習班教師教學行爲對學生學習策略影響之研究-以台北縣某國中學生數學補習爲例。數理學科教學知能,1,93 -109。
    邱玲劭(主編)(2000)。國民教育英語第八冊-教育部審定B版Happy Story系列。臺北市:何嘉仁。
    邱美江、陳靖奇(主編)(2006)。國民小學Go Go ABC英語教師手冊-第四冊(再版)。臺南市:南一書局。
    洪燕玲、黃秀霜、林娟如、周奕良、柳雅梅、謝麗雪(2006)。國中小英文認字測驗之編製。測驗學刊,53(2),155-180。
    張玉如(2012)。公因數公倍數概念學習之認知診斷與背景變項之關係。國立臺中教育大學教育測驗統計研究所碩士論文,未出版,臺中市。
    張景媛(1992)。自我調整、動機信念、選題策略與作業表現關係的研究曁自我調整訓練課程效果之評估。教育心理學報,25,201 -243。
    教育部(2005)。教育部辦理攜手計畫課後扶助補助要點。2012年12月29日,取自http://woa.mlc.edu.tw/viewitem.jsp?itemid=000000000006097
    教育部(2013)。國民中小學九年一貫課程綱要語文學習領域(英語)。2013年1月27日,取自http://teach.eje.edu.tw/9CC2/9cc_set.php
    許珊珊(2012)。不同的Q設計矩陣對於DINA模型概念診斷成效之影響-以國小四年級分數概念為例。國立臺中教育大學教育測驗統計研究所碩士論文,未出版,臺中市。
    陳純音(2008)。國小英語教師手冊-第八冊。新北市:康軒。
    陳智華(2009,2月20日)。大學學測英文作文 2萬人抱蛋。聯合新聞網。2013年3月20日,取自http://mag.udn.com/mag/campus/printpage.jsp?f_ART_ID=178811
    陳義汶(2007)。國中生數學焦慮及態度與數學課後補習之研究。臺南科大學報(人文管理),26(1),43 -64。
    楊佩霏(主編)(2008)。國民小學英語教師手冊。臺北市:佳音。
    楊智為、卓淑瑜、郭伯臣、陳亭宇(2011)。DINA與G-DINA 模式參數不變性探討。測驗統計年刊,19(1),1-15。
    詹偉佳(主編)(2009)。國民小學英語第八冊--教育部審定版Hi!English系列(再版)。臺北市:何嘉仁。
    鄒文莉(2004)。師院生對大一英文課程的期望及其影響變因之關聯性。課程與教學,7(4),59-76。
    銀慶貞、陶宏麟、洪嘉瑜(2012)。補習對考大學真的有用嗎?。經濟論文叢刊,40(1),75-120。
    賴世雄(2006)。文法從頭學。臺北市:長春藤。
    魏光亮(2011)。高中二年級學生在平面方程式概念學習之認知診斷分析。國立臺灣師範大學數學系在職進修碩士班碩士論文,未出版,臺北市。
    關秉寅、李敦義(2008)。補習數學有用嗎?一個“反事實”的分析。臺灣社會學刊,41,97-148。
    蘇秀枝(2005)。國小學童課後托育、補習才藝與學業成就、行為適應之關係-以台中縣大里市為例。朝陽人文社會學刊,3(1),173 -223。
    Abd-El-Fattah, S. M., & Patrick, R. R. (2011). The relationship among achievement motivation orientations, achievement goals, and academic achievement and interest: A multiple mediation analysis. Australian Journal of Educational & Developmental Psychology, 11, 91-110.
    Abedi, J., Leon, S., Kao, J., Bayley, R., Ewers, N., Herman, J., & Mundhenk, K. (2011). Accessible reading assessments for students with disabilities: The role of cognitive, grammatical, lexical, and textual/visual features. National Center for Research on Evaluation, Standards, and Student Testing (CRESST). (ED520492)
    Ardila, A., Rosselli, M., Matute, E., & Inozemtseva, O. (2011). Gender differences in cognitive development. Developmental Psychology, 47 (4), 984-990.
    Bandura, A. (1990). Multidimensional Scales of Perceived Self-efficacy. Stanford, CA: Stanford University.
    Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
    Choi, N. (2005). Self-efficacy and self-concept as predictors of college students’ academic performance. Psychology in the Schools, 42, 197-205.
    Colquitt, J. A., & Simmering, M. J. (1998). Conscientiousness, goal orientation, and motivation to learn during the learning process: A longitudinal study. Journal of Applied Psychology, 83, 654-665.
    Corno, L., Cronbach, L., Kupermintz, H., Lohman, D., Mandinach, E., Porteus, A., & Talbert, J. (2002). Remaking the concept of aptitude: Extending the legacy of Richard E. Snow. Mahwah, NJ: Lawrence Erlbaum Associates.
    Deci, E. L., Eghrari, H., Patrick, B. C., & Leone, D. R. (1994). Facilitating internalization: The self-determination theory perspective. Journal of Personality, 62, 119–142.
    Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
    DeFreitas, S. C. (2012). Ethnic differences in the relationship between self-efficacy, outcome expectations, and academic achievement for first-year college students. Social Psychology of Education, 15(1), 109-123.
    DeFreitas, S. C., & Bravo, A. Jr. (2012). The influence of involvement with faculty and mentoring on the self-efficacy and academic achievement of African American and Latino college students. Journal of the Scholarship of Teaching and Learning, 12(4), 1-11.
    de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
    de la Torre, J. (2009a). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130.
    de la Torre, J. (2009b). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33(3), 163-183.
    de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
    de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
    de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595-624.
    de la Torre, J., Hong, Y., & Deng, W. (2010). Factors affecting the item parameter estimation and classification accuracy of the DINA model. Journal of Educational Measurement, 47(2), 227-249.
    de la Torre, J., & Lee, Y. S. (2010). A note on the invariance of the DINA model parameters. Journal of Educational Measurement, 47(1), 115-127.
    de la Torre, J., & Patz, R. (2005). Making the most of what we have: A practical application of multidimensional item response theory in test scoring. Journal of Educational and Behavioral Statistics, 30, 295-311.
    Doornik, J. A. (2002). Object-oriented matrix programming using Ox (Version 3.1). [Computer software]. London: Timberlake Consultants Press.
    Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109-132.
    Elias, S. M. & MacDonald, S. (2007). Using past performance, proxy efficacy, and academic self-efficacy to predict college performance. Journal of Applied Social Psychology, 37 (11), 2518-2531.
    Elliot, A.J., & Church, M.A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72, 218-232.
    Elliot, A. J., & McGregor, H. A. (2001). A 2 x 2 achievement goal framework. Journal of Personality and Social Psychology, 80, 501-519.
    Finkelman, M., Kim, W., & Roussos, L. (2009). Automated test assembly for cognitive diagnostic models using a genetic algorithm. Journal of Educational Measurement, 46 (3), 273-292.
    Gierl, M., Cui, Y., & Zhou, J. (2009). Reliability and attribute-based scoring in cognitive diagnostic assessment. Journal of Educational Measurement, 46 (3), 293-313.
    Hagenaars, J. A. (1990). Categorical longitudinal data: Loglinear panel, trend, and cohort analysis. Thousand Oaks: Sage.
    Hagenaars, J. A. (1993). Loglinear models with latent variables. Thousand Oaks: Sage.
    Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with practicality. Unpublished doctoral dissertation. University of Illinois at Urbana-Champaign, Urbana.
    Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269, 41–45.
    Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.
    Hess, K. (2008). Teaching and assessing understanding of text structures across grades. Dover, NH: The National Center for the Improvement of Educational Assessment. Retrieved from http://www.nciea.org/publications/TextStructures_KH08.pdf
    Hess, K., & Biggam, S. (2004). A discussion of “increasing text complexity.” Dover, NH: The National Center for the Improvement of Educational Assessment. Retrieved from http://www.nciea.org/publications/TextComplexity_KH05.pdf
    House, J. D. (2006). Mathematics beliefs and achievement of elementary school students in Japan and the United States: Results from the Third International Mathematics and Science Study. The Journal of Genetic Psychology, 167(1), 31-45.
    Huebner, A. (2010). An overview of recent developments in cognitive diagnostic computer adaptive assessments. Practical Assessment, Research & Evaluation, 15(3), 1-7.
    Jang, E. E. (2005). A validity narrative: Effects of reading skills diagnosis on teaching and learning in the context of NG TOEFL. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign.
    Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment. Language Testing, 26(1), 31-73.
    Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.
    Kapikiran, S. (2012). Achievement goal orientations and self handicapping as mediator and moderator of the relationship between intrinsic achievement motivation and negative automatic thoughts in adolescence students. Educational Sciences: Theory & Practice, 12(2), 705-711.
    Kimura, D. (1999). Sex and cognition. Cambridge, MA: MIT Press.
    Kitsantas, A., Winsler, A. & Huie, F. (2009). Self-regulation and ability predictors of academic success during college: A predictive validity study. Journal of Advanced Academics, 20(1), 42-68.
    Lawrence, D. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8-26.
    Lee, Y. S., de la Torre, J., & Park, Y. S. (2012). Relationships between cognitive diagnosis, CTT, and IRT Indices: An empirical investigation. Asia Pacific Education Review, 13(2), 333-345.
    Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45, 79-122.
    Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212.
    McClelland, D. C. (1985). How motives, skills, and values determine what people do. American Psychologist, 40, 812–825.
    McClelland, D. C., Atkinson, J. W., Clark, R. A., & Lowell, E. L. (1953). The achievement motive. New York: Appleton-Century-Crofts.
    Meyer, C., Mayer, J., & Hung, S. (2012, November). What can we learn from multiple-choice distracters? Unpublished manuscript.
    Millon, T., Millon, C., Davis, R., & Grossman, S. (2006). MCMI-III manual (3rd ed.). Minneapolis: Pearson Assessments.
    Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrika, 16, 661-679.
    No Child Left Behind (2002). No Child Left Behind. Retrieved March 27, 2014, from http://www2.ed.gov/nclb/landing.jhtml
    Preckel, F., Goetz, T., Pekrun, M., & Kleine, M. (2008). Gender differences in gifted and average-ability students: Comparing girls’ and boys’ achievement, self-concept, interest, and motivation in mathematics. The Gifted Child Quarterly, 52(2), 146-159.
    Robbins, S. B., Lauver, K., Le, H., Davis, R., & Langley, A. (2004). Do psychosocial and study skills factors predict college outcomes? Psychological Bulletin, 130, 261-288.
    Rossi, G., Sloore, H., & Derksen, J. (2008). The adaptation of the MCMI-III in two non-English-speaking countries: state of the art of the Dutch language version. In Millon, T., & Bloom, C. (Eds.), The Millon inventories: a practitioner’s guide to personalized clinical assessment (2nd ed., pp. 369–386). New York: Guilford.
    Roussos, L. A., DiBello, L.V., Stout, W., Hartz, S. M., Henson, R. A., & Templin, J. L. (2007). The fusion model skills diagnosis system. In Leighton, J. P., & Gierl, M. J. (Eds.), Cognitively diagnostic assessment for education: theory and applications (pp. 275–318). Cambridge: Cambridge University Press.
    Rupp, A., & Templin, J. (2008a). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement February, 68, 78-96.
    Rupp, A., & Templin, J. (2008b). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement, 6, 219-262.
    Sadler, P. M. (1998). Psychometric models of student conceptions in science: Reconciling qualitative studies and distractor-driven assessment instruments. Journal of Research in Science Teaching, 35, 265-296.
    Steele-Johnson, D., Beauregard, R. S., Hoover, P. B., & Schmidt, A. M. (2000). Goal orientation and task demand effects on motivation, affect, and performance. Journal of Applied Psychology, 85(5), 724-738.
    Senko, C., Durik, A. M., & Harackiewicz, J. M. (2008). Historical perspectives and new directions in achievement goal theory. In J. Y. Shah & A. W. Gardner (Eds.), Handbook of motivation science (pp. 100-113). New York: Guilford Press.
    Stiggins. R. J. (2002). Assessment crisis: The absence of assessment for learning. Phi Delta Kappan, 83, 758-765.
    Templin, J., & Henson, R. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.
    Thompson, N. (2007). A practitioner’s guide for variable-length computerized classification testing. Practical Assessment, Research & Evaluation, 12(1), 1-13.
    von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report RR-05-16). Princeton: Educational Testing Service.
    Wainer, H., Vevea, J. L., Camacho, F., Reeve, B., Rosa, K., Nelson, L., et al. (2001). Augmented scores— ‘‘Borrowing strength’’ to compute scores based on small number of items. In D. Thissen & H. Wainer (Eds.), Test scoring (pp. 343-387). Mahwah, NJ: Lawrence Erlbaum.
    Weiss, E. M., Kemmlera, G., Deisenhammerb, E. A., Fleischhackera, W. W., & Delazer, M. (2003). Sex differences in cognitive functions. Personality and Individual Differences, 35, 863–875.
    Description: 博士
    國立政治大學
    教育研究所
    99152513
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099152513
    Data Type: thesis
    Appears in Collections:[教育學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2445View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback