Reference: | Amin, K. I., 1993. Jump diffusion option valuation in discrete time. The Journal of Finance 48, 1833–1863. Ball, C. A., Torous, W. N., 1983. A simplified jump process for common stock returns. Journal of Financial and Quantitative Analysis 18, 53–65. Ball, C. A., Torous, W. N., Tschoegl, A. E., 1985. An empirical investigation of the EOE gold options market. Journal of Banking and Finance 9, 101–113. Baur, D. G., Lucey, B. M., 2010. Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financial Review 45, 217–229. Baur, D. G., McDermott, T. K., 2010. Is gold a safe haven? International evidence. Journal of Banking and Finance 34, 1886–1898. Beckers, S., 1981. A note on estimating the parameters of the diffusion jump model of stock returns. Journal of Financial and Quantitative Analysis 16, 127–140. Beckers, S., 1984. On the efficiency of the gold options market. Journal of Banking and Finance 8, 459–470. Boyle, P., Broadie, M., Glasserman, P., 1997. Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control 21, 1267–1321. Brennan, M., Schwartz, E., 1977. The valuation of American put options. Journal of Finance 32, 449–462. Capie, F., Mills, T. C., Wood, G., 2005. Gold as a hedge against the dollar. Journal of International Financial Markets, Institutions and Money 15, 343–352. Carr, P., Geman, H., Madan, D., Yor, M., 2002. The fine structure of asset returns: an empirical investigation. Journal of Business 75, 305–332. Chan, W. H., Maheu, J. M., 2002. Conditional jump dynamics in stock market returns. Journal of Business & Economic Statistics 20, 377–389. Chang, C., Fuh, C. D., Lin, S. K., 2013. A tale of two regimes: theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications. Journal of Banking and Finance 37, 3204–3217. Cox, J. C., Ross, S. A., Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of Financial Economics 7, 229–263. Duan, J. C., Ritchken, P., Sun, Z., 2006. Approximating GARCH-jump models, jump-diffusion processes, and option pricing. Mathematical Finance 16, 21–52. Elliott, R. J., Chan, L., Siu, T. K., 2005. Option pricing and Esscher transform under regime switching. Annals of Finance 1, 423–432. Elliott, R. J., Osakwe, C.-J. U., 2006. Option pricing for pure jump processes with Markov switching compensators. Finance and Stochastics 10, 250–275. Elliott, R. J., Siu, T. K., Chan, L., Lau, J. W., 2007. Pricing options under a generalized Markov-modulated jump-diffusion model. Stochastic Analysis and Applications 25, 821–843. Elliott, R. J., Siu, T. K., 2011. A risk-based approach for pricing American options under a generalized Markov regime-switching model. Quantitative Finance 11, 1633–1646. Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in volatility and returns. Journal of Finance 58, 1269–1300. Eraker, B., 2004. Do stock market and volatility jump? Reconciling evidence from spot and option prices. Journal of Finance 59, 1367–1404. Gerber, H. U., Shiu, E. S. W., 1994. Option pricing by Esscher transforms (with discussions). Transactions of Society of Actuaries 46, 99–191. Gerber, H. U., Shiu, E. S. W., 1996. Actuarial bridges to dynamic hedging and option pricing. Insurance: Mathematics and Economics 18, 183–218. Hull, J., White, A., 1990. Valuing derivative securities using the explicit finite difference method. Journal of Financial and Quantitative Analysis 25, 87–100. Khalaf, L., Saphores, J.-D., Bilodeau, J.-F., 2003. Simulation-based exact jump tests in models with conditional heteroskedasticity. Journal of Economic Dynamics and Control 28, 531–553. Kou, S. G., 2002. A jump-diffusion model for option pricing. Management Science 48, 1086–1101. Lange, K., 1995a. A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society 57, 425–437. Lange, K., 1995b. A quasi-Newton acceleration of the EM algorithm. Statistica Sinica 5, 1–18. Last, G., Brandt, A., 1995. Marked point processes on the real line: the dynamic approach. Springer-Verlag, New York. Longstaff, F. A., Schwartz, E. S., 2001. Valuing American options by simulation: a simple least-squares approach. Review of Financial Studies 14, 113–147. Maheu, J. M., McCurdy, T. H., 2004. News arrival, jump dynamics and volatility components for individual stock returns. Journal of Finance 59, 755–793. McCown, J. R., Zimmerman, J. R., 2006. Is gold a zero-beta asset? Analysis of the investment potential of precious metals. Unpublished working paper, Oklahoma City University. Available from http://ssrn.com/abstract=920496. McCown, J. R., Zimmerman, J. R., 2007. Analysis of the investment potential and inflation-hedging ability of precious metals. Unpublished working paper, Oklahoma City University. Available from http://ssrn.com/abstract=1002966. Meng, X. L., Rubin, D. B., 1991. Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. Journal of the American Statistical Association 86, 899–909. Merton, R. C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3, 125–144. Ogden, J. P., Tucker, A. L., Vines, T. W., 1990. Arbitraging American gold spot and futures options. Financial Review 25, 577–592. Reboredo, J. C., 2013. Is gold a safe haven or a hedge for the US dollar? Implications for risk management. Journal of Banking and Finance 37, 2665–2676. Zagaglia, P., Marzo, M., 2013. Gold and the U.S. dollar: tales from the turmoil. Quantitative Finance 13, 571–582. |