政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/66286
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50799531      Online Users : 820
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/66286


    Title: MeCP2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder
    Authors: 廖文霖
    Liao, Wen-Lin
    Contributors: 神科所
    Date: 2012-04
    Issue Date: 2014-05-27 11:24:58 (UTC+8)
    Abstract: Impairments in cortical sensory processing have been demonstrated in Rett syndrome (RTT) and Autism Spectrum Disorders (ASD) and are thought to contribute to high-order phenotypic deficits. However, underlying pathophysiological mechanisms for these abnormalities are unknown. This study investigated auditory sensory processing in a mouse model of RTT with a heterozygous loss of MeCP2 function. Cortical abnormalities in a number of neuropsychiatric disorders, including ASD are reflected in auditory evoked potentials and fields measured by EEG and MEG. One of these abnormalities, increased latency of cortically sourced components, is associated with language and developmental delay in autism. Additionally, gamma-band abnormalities have recently been identified as an endophenotype of idiopathic autism. Both of these cortical abnormalities are potential clinical endpoints for assessing treatment. While ascribing similar mechanisms of idiopathic ASD to Rett syndrome (RTT) has been controversial, we sought to determine if mouse models of RTT replicate these intermediate phenotypes. Mice heterozygous for the null mutations of the gene MeCP2, were implanted for EEG. In response to auditory stimulation, these mice recapitulated specific latency differences as well as select gamma and beta band abnormalities associated with ASD. MeCP2 disruption is the predominant cause of RTT, and reductions in MeCP2 expression predominate in ASD. This work further suggests a common cortical pathophysiology for RTT and ASD, and indicates that the MeCP2+/− model may be useful for preclinical development targeting specific cortical processing abnormalities in RTT with potential relevance to ASD.
    Relation: Neurobiology of Disease, 46(1), 88-92
    Data Type: article
    DOI link: https://doi.org/10.1016/j.nbd.2011.12.048
    DOI: 10.1016/j.nbd.2011.12.048
    Appears in Collections:[Graduate Institute of Neuroscience] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    8892.pdf476KbAdobe PDF21051View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback