English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113451/144438 (79%)
Visitors : 51245844      Online Users : 877
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/65080
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/65080


    Title: 由史料中探勘職官年表:以康熙時期為例
    Discovering Official Chronology from Historical Documents Using Kangxi`s Reign as an Example
    Authors: 闕伯丞
    Que, Bo Cheng
    Contributors: 沈錳坤
    Shan, Man Kwan
    闕伯丞
    Que, Bo Cheng
    Keywords: 資料探勘
    職官年表
    清聖祖實錄
    Data Mining
    Official Chronology
    Veritable Records of Qing
    Date: 2009
    Issue Date: 2014-04-01 11:16:53 (UTC+8)
    Abstract: 在現今文獻典藏數位化技術發展蓬勃之下,已經有許多古籍資料庫提供豐富的歷史典籍給史學家查詢搜索,結合資訊技術可以協助史學研究進行分析比較,減輕過程中處理大量資料的困擾,成為歷史學者檢校、查考、補註或是訂正的輔助工具。
    本論文之研究目的是從歷史文獻中進行職官資訊的探勘與擷取,運用資料探勘技術,根據職官名稱,由史料中識別職官的人名與任期,以自動產生職官年表。我們提出基於歷史文本的寫作特性,藉由資料探勘與資訊擷取的相關技術,利用區間頻繁項目集探勘的方式,在建置的職官資料庫當中識別擔任職官的人名,同時擷取出擔任職官的任期,最後利用這些職官資訊來產生康熙時期的職官年表。
    As the advance of the technique of digital archives, there exist many historical databases that provide abundant historical documents for historian searching. The integration with information technology can help historical researchers and reduce the struggle of handling a huge number of data.
    The research goal of this thesis is mining and extracting official information from historical documents. We propose the algorithm to extract the named-entity of official based on the frequent itemset mining with period on the official database. We use these official information to generate the official chronology of Kangxi’s Reign.
    Reference: [1] 二月河,康熙大帝,台經院文化,臺北,2001年。
    [2] 毛婷婷、李麗雙與黃德根,基於混合模型的中國人名識別,《中文信息學報》,第二十一卷,第二期,2007年。
    [3] 朱政吉,由史料中探勘社會網絡:以乾隆時期為例,國立政治大學資訊科學學系碩士論文,2008年。
    [4] 向曉雯、史曉東與曾準琳,一個統計與規則相結合的中文命名實體識別系統,計算機應用,第二十五卷,第十期,2005年。
    [5] 李中國與劉穎,邊界模板和局部統計相結合的中國人名識別,《中文信息學報》第二十卷,第五期,2006年。
    [6] 李振昌、李御璽與陳信希,中文文本專有名詞辨識問題之研究,國立臺灣大學資訊工程學系碩士論文,1994年。
    [7] 李澍田編,清實錄東北史料全輯 (共三冊),吉林文史出版社,長春,1988年。
    [8] 張尚斌,詞夾子演算法在專有名詞辨識上的應用─以歷史文件為例,國立臺灣大學資訊工程學系碩士論文,2005年。
    [9] 張敏與毛少平,用於信息檢索的古文統計分析,《中文信息學報》第十五卷第六期,2001年。
    [10] 陳捷先,滿文清實錄研究,大化書局出版社,臺北,1978年。
    [11] 趙爾巽等纂修,清史稿 (共五冊),博愛出版社,臺北,1983年。
    [12] 錢實甫編,清代職官年表 (共四冊),中華書局出版社,北京,1980年。
    [13] R. Agrawal and R. Srikant,“Fast Algorithms for Mining Association Rules,” Proceedings of the 20th International Conference on Very Large Data Bases, 1994.
    [14] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, The ACM Press, 1999.
    [15] O. Bender, F. J. Och, and H. Ney, “Maximum Entropy Models for Named Entity Recognition,” Proceedings of the seventh conference on Natural language learning, 2003.
    [16] C. K. Fan and W. H. Tsai, “Automatic Word Identification in Chinese Sentences by the Relaxation Technique,” Proceeding of National Computer Symposium, 1987.
    [17] D. Farmakiotou, V. Karkaletsis, J. Koutsias, G. Sigletos, C. D. Spyropoulos, and P. Stamatopoulos, “Rule-Based Named Entity Recognition For Greek Financial Texts,” In Proceedings of the Workshop on Computational Lexicography and Multimedia Dictionaries, 2000.
    [18] M. Fresko, B. Rozenfeld, and Ronen Feldman, “A Hybrid Approach to NER by Integrating Manual Rules into MEMM,” AI and Math, 2006.
    [19] J. Han and M. Kamber, Data mining: Concepts and Techniques Second Edition, Elsevier, San Francisco, 2006.
    [20] J. W. Huang, B. R. Dai, and M. S. Chen, “Twain: Two-End Association Miner with Precise Frequent Exhibition Periods,” ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 2, 2007.
    [21] H. Isozaki and H. KazawaEfficient, “Support Vector Classifiers for Named Entity Recognition,” In Proceedings of the 19th International Conference on Computational Linguistics, 2002.
    [22] K.T. Lua and K.W. Gan, “An Application of Information Theory in Chinese Word Segmentation,” Journal of Computer Processing of Chinese and Oriental Languge, Vol. 8, No. 1, 1994.
    [23] B. I. Li, S. Lien, C. F. Sun and M. S. Sun, “A Maximal Matching Automatic Chinese Word Segmentation Algorithm Using Corpus Tagging for Ambiguity Resolution,” Proceedings of the Conference on Research on Computational Linguistics, 1991.
    [24] J. Y. Nie, M. L. Hannan, and W. Jin, “Unknow Word Detection and Segmentation of Chinese Using Statistical and Heuristic Knowledge,” Journal of Communications of the Chinese and Oriental Languages Information Processing Society, Vol. 5, 1995.
    [25] B. Settles, “Biomedical Named Entity Recognition Using Conditional Random Fields and Rich Feature Sets,” Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications, 2004.
    [26] R. Song, “Person Name Recognition Method Based on Corpus and Rule,” In Computational Language Research and Development, L. W. Chen & Q. Yuan, ed., Beijing Institute of Linguistic Press, 1993.
    [27] Y. Wu, J. Zhao and B. Xu, “Chinese Named Entity Recognition Combining a Statistical Model with Human Knowledge,” In Proceedings of the Workshop on Multilingual and Mixed-language Named Entity Recognition, 2003.
    [28] G. D. Zhou and J. Su, “Named Entity Recognition using an HMM-based Chunk Tagger,” Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002.
    [29] X. Zhu, M. Li, J. Gao and C. N. Huang, “Single Character Chinese Named Entity Recognition,” Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing, 2003.
    [30] H. P. Zhang, Q. Liu, H. Yu, X. Cheng and S. Bai, “Chinese Named Entity Recognition Using Role Model,” Computational Linguistics and Chinese Language Processing, Vol. 8, No. 2, 2003.
    [31] G. D. Zhou and J. Su, “Named Entity Recognition using and HMM-based Chunk Tagger,” Preceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002.
    Description: 碩士
    國立政治大學
    資訊科學學系
    96753016
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096753016
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    301601.pdf1936KbAdobe PDF2381View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback