Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/64383
|
Title: | 成年大鼠海馬迴之新生成神經細胞在學習記憶中所扮演的角色 The role of adult born neurons of the hippocampus in learning and memory |
Authors: | 林曉涵 Lin, Hsiao Han |
Contributors: | 賴桂珍 Lai, Guey Jen 林曉涵 Lin, Hsiao Han |
Keywords: | 海馬迴 學習與記憶 神經新生 Hippocampus Learning and Memory Neurogenesis |
Date: | 2013 |
Issue Date: | 2014-03-03 15:41:13 (UTC+8) |
Abstract: | 海馬迴為主要參與學習記憶和認知的腦區,許多認知功能異常與海馬迴有關,例如阿茲海默症、壓力皆會對認知功能造成影響。在成熟哺乳類動物的大腦中發現海馬迴的顆粒細胞下區(Subgranular zone, SGZ)持續有新神經細胞生成。在先前的實驗,我們在海馬迴之顆粒細胞大量死亡的大鼠中成功促進成體神經新生(adult neurogenesis)而且使海馬迴的學習記憶功能恢復,但對於這些新生成神經細胞是否參與學習記憶的進行並不清楚。海馬迴的顆粒細胞需要腎上腺所分泌的皮質酮才能生存,如果將雙側腎上腺移除會造成顆粒細胞大量死亡。因此摘除雙側腎上腺(adrenalectomized,ADX)的老鼠可以當作一個研究海馬迴之顆粒細胞死亡與新生的模型。當ADX三個月後給予sonic hedgehog(shh)和豐富環境後,觀察到有大量的新顆粒細胞生成,而且原本有問題的海馬迴之學習記憶功能也恢復正常。所以接下來我們要探討這些新生成的神經細胞是否併入原本的神經網絡,而且參與學習記憶的過程,利用Arc的組織免疫染色來觀察,Arc屬於當突觸活化時會立即表達的基因(immediate early gene),在進行行為測試後1.5小時可被觀察到。以觀察Arc和BrdU(標定十週前所新生成的細胞)共同染到的狀況,推測新生成神經細胞參與在學習記憶上。從我們的實驗結果顯示給予Shh後待豐富環境的ADX老鼠比待一般鼠籠環境的ADX老鼠在齒狀迴有大量的Arc和BrdU共同被染到,而且在Object-context association行為測試上,待豐富環境的老鼠,表現與正常老鼠一樣,但是待一般鼠籠環境的則與沒給Shh處理的ADX老鼠表現相同,顯示Shh的治療效果必須搭配豐富環境才能顯現出來。從結果推測經過Shh和豐富環境刺激所生成且存活下來的神經細胞會參與在神經網絡的活動中。 The hippocampus is a brain region critical to learning and memory and is a frequent target of many neurological diseases such as Alzheimer’s, other forms of dementia, and chronic stress that have dramatic cognitive consequences. The Subgranular zone (SGZ) of the hippocampus is one of the mammalian brain regions where new neurons are generated continuously throughout adult life. Previously, we have successfully promoted adult neurogenesis and demonstrated functional recovery after hippocampal granule cell degeneration in a rat model. This study was undertaken to address the question of whether the adult-born neurons were integrated into a neural network and involved in the process of learning and memory. Corticosterone, secreted by adrenal glands, is required for hippocampal granule cell survival and bilateral removal of adrenal glands lead to granule cell death. Therefore, adrenalectomized (ADX) rats were used to ablate, and regenerate granule cells in the hippocampus. Three months after treatment of ADX animals with sonic hedgehog (shh) and environmental enrichment, significant amount of granule cell regeneration and restoration of brain function was observed. To determine whether the new born neurons were integrated into a neural network and participated in the learning and memory process, immunohistochemistry for Arc, a synaptic activity dependent immediate early gene product was performed after behavior test. Colocalization of Arc and BrdU (a marker for neurons born 10 weeks ago) staining suggests that new neurons which were born during shh treatment were involved in the learning and memory. Colocalization of Arc and BrdU was more abundant in the dentate gyrus of the hippocampus in ADX animals treated with shh and housed in the enriched environment when compared with untreated ADX animals or ADX animals treated with shh but housed in cages. These results suggest that after treatment with shh and environmental enrichment, new born neurons survives for at least 3 months and participates in the activities of neural networks. |
Reference: | Alberi, L., Liu, S., Wang, Y., Badie, R., Smith-Hicks, C., Wu, J., . . . Gaiano, N. (2011). Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron, 69(3), 437-444. doi: 10.1016/j.neuron.2011.01.004 Altman, J., & Das, G. D. (1965a). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 124(3), 319-335. Altman, J., & Das, G. D. (1965b). Post-natal origin of microneurones in the rat brain. Nature, 207(5000), 953-956. Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2002). Neurogenesis in adult subventricular zone. J Neurosci, 22(3), 629-634. Barbosa, F. F., Pontes, I. M., Ribeiro, S., Ribeiro, A. M., & Silva, R. H. (2012). Differential roles of the dorsal hippocampal regions in the acquisition of spatial and temporal aspects of episodic-like memory. Behav Brain Res, 232(1), 269-277. doi: 10.1016/j.bbr.2012.04.022 Beckman, D., & Santos, L. E. (2013). The importance of serotonin in exercise-induced adult neurogenesis: new evidence from Tph2-/- mice. J Neurosci, 33(36), 14283-14284. doi: 10.1523/JNEUROSCI.2911-13.2013 Bekinschtein, P., Renner, M. C., Gonzalez, M. C., & Weisstaub, N. (2013). Role of Medial Prefrontal Cortex Serotonin 2A Receptors in the Control of Retrieval of Recognition Memory in Rats. J Neurosci, 33(40), 15716-15725. doi: 10.1523/JNEUROSCI.2087-13.2013 Bernier, P. J., Bedard, A., Vinet, J., Levesque, M., & Parent, A. (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A, 99(17), 11464-11469. doi: 10.1073/pnas.172403999 Birch, A. M., & Kelly, A. M. (2013). Chronic intracerebroventricular infusion of nerve growth factor improves recognition memory in the rat. Neuropharmacology, 75C, 255-261. doi: 10.1016/j.neuropharm.2013.07.023 Bliss, T. V., & Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol, 232(2), 357-374. Blundon, J. A., & Zakharenko, S. S. (2008). Dissecting the components of long-term potentiation. Neuroscientist, 14(6), 598-608. doi: 10.1177/1073858408320643 Brill, M. S., Ninkovic, J., Winpenny, E., Hodge, R. D., Ozen, I., Yang, R., . . . Gotz, M. (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci, 12(12), 1524-1533. doi: 10.1038/nn.2416 Buschler, A., & Manahan-Vaughan, D. (2012). Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci, 6, 85. doi: 10.3389/fnbeh.2012.00085 Chawana, R., Patzke, N., Kaswera, C., Gilissen, E., Ihunwo, A. O., & Manger, P. R. (2013). Adult neurogenesis in eight Megachiropteran species. Neuroscience, 244, 159-172. doi: 10.1016/j.neuroscience.2013.04.020 Cho, Y. H., Friedman, E., & Silva, A. J. (1999). Ibotenate lesions of the hippocampus impair spatial learning but not contextual fear conditioning in mice. Behav Brain Res, 98(1), 77-87. Clark, P. J., Bhattacharya, T. K., Miller, D. S., & Rhodes, J. S. (2011). Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience, 184, 16-27. doi: 10.1016/j.neuroscience.2011.03.072 Conrad, C. D., & Roy, E. J. (1993). Selective loss of hippocampal granule cells following adrenalectomy: implications for spatial memory. J Neurosci, 13(6), 2582-2590. Dahmane, N., Sanchez, P., Gitton, Y., Palma, V., Sun, T., Beyna, M., . . . Ruiz i Altaba, A. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development, 128(24), 5201-5212. Davies, S. N., & Collingridge, G. L. (1989). Role of excitatory amino acid receptors in synaptic transmission in area CA1 of rat hippocampus. Proc R Soc Lond B Biol Sci, 236(1285), 373-384. Davis, S., Bozon, B., & Laroche, S. (2003). How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res, 142(1-2), 17-30. Dayer, A. G., Cleaver, K. M., Abouantoun, T., & Cameron, H. A. (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3), 415-427. doi: 10.1083/jcb.200407053 Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., & Schinder, A. F. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44), 10074-10086. doi: 10.1523/JNEUROSCI.3114-05.2005 Ewing, S. G., Porr, B., & Pratt, J. A. (2013). Deep brain stimulation of the mediodorsal thalamic nucleus yields increases in the expression of zif-268 but not c-fos in the frontal cortex. J Chem Neuroanat, 52, 20-24. doi: 10.1016/j.jchemneu.2013.04.002 Faigle, R., & Song, H. (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta, 1830(2), 2435-2448. doi: 10.1016/j.bbagen.2012.09.002 Faulkner, R. L., Jang, M. H., Liu, X. B., Duan, X., Sailor, K. A., Kim, J. Y., . . . Cheng, H. J. (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci U S A, 105(37), 14157-14162. doi: 10.1073/pnas.0806658105 Feng, W., Khan, M. A., Bellvis, P., Zhu, Z., Bernhardt, O., Herold-Mende, C., & Liu, H. K. (2013). The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell, 13(1), 62-72. doi: 10.1016/j.stem.2013.05.002 Fowler, C. D., Liu, Y., Ouimet, C., & Wang, Z. (2002). The effects of social environment on adult neurogenesis in the female prairie vole. J Neurobiol, 51(2), 115-128. Frohardt, R. J., Guarraci, F. A., & Bouton, M. E. (2000). The effects of neurotoxic hippocampal lesions on two effects of context after fear extinction. Behav Neurosci, 114(2), 227-240. Gay, F., Laforgia, V., Caputo, I., Esposito, C., Lepretti, M., & Capaldo, A. (2013). Chronic exposure to cadmium disrupts the adrenal gland activity of the newt Triturus carnifex (Amphibia, Urodela). Biomed Res Int, 2013, 424358. doi: 10.1155/2013/424358 Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4), 559-566. doi: 10.1016/j.neuron.2007.05.002 Goodrich, L. V., & Scott, M. P. (1998). Hedgehog and patched in neural development and disease. Neuron, 21(6), 1243-1257. Gould, E., Reeves, A. J., Graziano, M. S., & Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science, 286(5439), 548-552. Harati, H., Majchrzak, M., Cosquer, B., Galani, R., Kelche, C., Cassel, J. C., & Barbelivien, A. (2011). Attention and memory in aged rats: Impact of lifelong environmental enrichment. Neurobiol Aging, 32(4), 718-736. doi: 10.1016/j.neurobiolaging.2009.03.012 Hodge, R. D., Kowalczyk, T. D., Wolf, S. A., Encinas, J. M., Rippey, C., Enikolopov, G., . . . Hevner, R. F. (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14), 3707-3717. doi: 10.1523/JNEUROSCI.4280-07.2008 Hornsby, C. D., Grootendorst, J., & de Kloet, E. R. (1996). Dexamethasone Does Not Prevent Seven-Day ADX-Induced Apoptosis in the Dentate Gyrus of the Rat Hippocampus. Stress, 1(1), 51-64. Hu, Z., Yuri, K., Ozawa, H., Lu, H., & Kawata, M. (1997). The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J Neurosci, 17(11), 3981-3989. Jankord, R., & Herman, J. P. (2008). Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci, 1148, 64-73. doi: 10.1196/annals.1410.012 Jarrard, L. E. (1983). Selective hippocampal lesions and behavior: effects of kainic acid lesions on performance of place and cue tasks. Behav Neurosci, 97(6), 873-889. Jenkins, L. J., & Ranganath, C. (2010). Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. J Neurosci, 30(46), 15558-15565. doi: 10.1523/JNEUROSCI.1337-10.2010 Kee, N., Teixeira, C. M., Wang, A. H., & Frankland, P. W. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci, 10(3), 355-362. doi: 10.1038/nn1847 Kempermann, G. (2011). Seven principles in the regulation of adult neurogenesis. Eur J Neurosci, 33(6), 1018-1024. doi: 10.1111/j.1460-9568.2011.07599.x Kesner, R. P. (2013). An analysis of the dentate gyrus function. Behav Brain Res, 254, 1-7. doi: 10.1016/j.bbr.2013.01.012 Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear. Science, 256(5057), 675-677. Kokoeva, M. V., Yin, H., & Flier, J. S. (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol, 505(2), 209-220. doi: 10.1002/cne.21492 Konefal, S., Elliot, M., & Crespi, B. (2013). The adaptive significance of adult neurogenesis: an integrative approach. Front Neuroanat, 7, 21. doi: 10.3389/fnana.2013.00021 Lai, G.J. Lin, H.H.& Sutherland, R.J. (a). Behavior deficit, neurogenesis, and functional recovery after granule cell death in the hippocampus. Manuscript. Lai, G.J., Lehmann, H. & Sutherland, R.J. (b) Behavioral deficits induced by granule cell death in the hippocampus after adrenalectomy . Manuscript Lanahan, A., & Worley, P. (1998). Immediate-early genes and synaptic function. Neurobiol Learn Mem, 70(1-2), 37-43. doi: 10.1006/nlme.1998.3836 Laviola, G., Hannan, A. J., Macri, S., Solinas, M., & Jaber, M. (2008). Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis, 31(2), 159-168. doi: 10.1016/j.nbd.2008.05.001 Lichtenwalner, R. J., & Parent, J. M. (2006). Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab, 26(1), 1-20. doi: 10.1038/sj.jcbfm.9600170 Livneh, Y., & Mizrahi, A. (2012). Experience-dependent plasticity of mature adult-born neurons. Nat Neurosci, 15(1), 26-28. doi: 10.1038/nn.2980 Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., . . . Worley, P. F. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron, 14(2), 433-445. Manoranjan, B., Venugopal, C., McFarlane, N., Doble, B. W., Dunn, S. E., Scheinemann, K., & Singh, S. K. (2012). Medulloblastoma stem cells: where development and cancer cross pathways. Pediatr Res, 71(4 Pt 2), 516-522. doi: 10.1038/pr.2011.62 Martinez, C., Cornejo, V. H., Lois, P., Ellis, T., Solis, N. P., Wainwright, B. J., & Palma, V. (2013). Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source. PLoS One, 8(6), e65818. doi: 10.1371/journal.pone.0065818 Mayadevi, M. (2012). Molecular Mechanisms in Synaptic Plasticity. Neuroscience – Dealing with Frontiers Maynard, M. E., & Leasure, J. L. (2013). Exercise Enhances Hippocampal Recovery following Binge Ethanol Exposure. PLoS One, 8(9), e76644. doi: 10.1371/journal.pone.0076644 McClelland, J. L., McNaughton, B. L., & O`Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev, 102(3), 419-457. Messaoudi, E., Kanhema, T., Soule, J., Tiron, A., Dagyte, G., da Silva, B., & Bramham, C. R. (2007). Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci, 27(39), 10445-10455. doi: 10.1523/JNEUROSCI.2883-07.2007 Migaud, M., Batailler, M., Segura, S., Duittoz, A., Franceschini, I., & Pillon, D. (2010). Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci, 32(12), 2042-2052. doi: 10.1111/j.1460-9568.2010.07521.x Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4), 687-702. doi: 10.1016/j.neuron.2011.05.001
Morris, A. M., Curtis, B. J., Churchwell, J. C., Maasberg, D. W., & Kesner, R. P. (2013). Temporal associations for spatial events: The role of the dentate gyrus. Behav Brain Res, 256C, 250-256. doi: 10.1016/j.bbr.2013.08.021 Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319(6056), 774-776. doi: 10.1038/319774a0 Morris, R. G., Garrud, P., Rawlins, J. N., & O`Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683. Mumby, D. G., Gaskin, S., Glenn, M. J., Schramek, T. E., & Lehmann, H. (2002). Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem, 9(2), 49-57. doi: 10.1101/lm.41302 Ninkovic, J., Steiner-Mezzadri, A., Jawerka, M., Akinci, U., Masserdotti, G., Petricca, S., . . . Gotz, M. (2013). The BAF Complex Interacts with Pax6 in Adult Neural Progenitors to Establish a Neurogenic Cross-Regulatory Transcriptional Network. Cell Stem Cell, 13(4), 403-418. doi: 10.1016/j.stem.2013.07.002 Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci, 7(9), 697-709. doi: 10.1038/nrn1970 O`Brien, N., Lehmann, H., Lecluse, V., & Mumby, D. G. (2006). Enhanced context-dependency of object recognition in rats with hippocampal lesions. Behav Brain Res, 170(1), 156-162. doi: 10.1016/j.bbr.2006.02.008 Park, H., Leal, F., Spann, C., & Abellanoza, C. (2013). The effect of object processing in content-dependent source memory. BMC Neurosci, 14, 71. doi: 10.1186/1471-2202-14-71 Pearce, J. M., Roberts, A. D., & Good, M. (1998). Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Nature, 396(6706), 75-77. doi: 10.1038/23941 Pekcec, A., Loscher, W., & Potschka, H. (2006). Neurogenesis in the adult rat piriform cortex. Neuroreport, 17(6), 571-574. Pfeiffer, B. E., & Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths to remembered goals. Nature, 497(7447), 74-79. doi: 10.1038/nature12112 Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci, 106(2), 274-285. Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., . . . Kuhl, D. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 52(3), 437-444. doi: 10.1016/j.neuron.2006.08.024 Rodgers, S. P., Trevino, M., Zawaski, J. A., Gaber, M. W., & Leasure, J. L. (2013). Neurogenesis, exercise, and cognitive late effects of pediatric radiotherapy. Neural Plast, 2013, 698528. doi: 10.1155/2013/698528 Roozendaal, B., Sapolsky, R. M., & McGaugh, J. L. (1998). Basolateral amygdala lesions block the disruptive effects of long-term adrenalectomy on spatial memory. Neuroscience, 84(2), 453-465. Rotschafer, J. H., Hu, S., Little, M., Erickson, M., Low, W. C., & Cheeran, M. C. (2013). Modulation of neural stem/progenitor cell proliferation during experimental Herpes Simplex encephalitis is mediated by differential FGF-2 expression in the adult brain. Neurobiol Dis, 58, 144-155. doi: 10.1016/j.nbd.2013.05.018 Sapolsky, R. M. (1985). A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci, 5(5), 1228-1232. Sendrowski, K., & Sobaniec, W. (2013). Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep, 65(3), 555-565. Shapiro, L. A., Ng, K. L., Kinyamu, R., Whitaker-Azmitia, P., Geisert, E. E., Blurton-Jones, M., . . . Ribak, C. E. (2007). Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct, 212(2), 133-148. doi: 10.1007/s00429-007-0151-3 Sloviter, R. S., Dean, E., & Neubort, S. (1993). Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J Comp Neurol, 330(3), 337-351. doi: 10.1002/cne.903300305 Sloviter, R. S., Valiquette, G., Abrams, G. M., Ronk, E. C., Sollas, A. L., Paul, L. A., & Neubort, S. (1989). Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science, 243(4890), 535-538. Solinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol, 92(4), 572-592. doi: 10.1016/j.pneurobio.2010.08.002 Sousa, N., & Almeida, O. F. (2002). Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci, 13(1), 59-84. Spanswick, S. C., Epp, J. R., Keith, J. R., & Sutherland, R. J. (2007). Adrenalectomy-induced granule cell degeneration in the hippocampus causes spatial memory deficits that are not reversed by chronic treatment with corticosterone or fluoxetine. Hippocampus, 17(2), 137-146. doi: 10.1002/hipo.20252 Steward, O., Wallace, C. S., Lyford, G. L., & Worley, P. F. (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron, 21(4), 741-751. Sultan, S., Gebara, E., & Toni, N. (2013). Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci, 7, 131. doi: 10.3389/fnins.2013.00131 Sultan, S., Gebara, E. G., Moullec, K., & Toni, N. (2013). D-serine increases adult hippocampal neurogenesis. Front Neurosci, 7, 155. doi: 10.3389/fnins.2013.00155 Tan, A., Moratalla, R., Lyford, G. L., Worley, P., & Graybiel, A. M. (2000). The activity-regulated cytoskeletal-associated protein arc is expressed in different striosome-matrix patterns following exposure to amphetamine and cocaine. J Neurochem, 74(5), 2074-2078. Tanti, A., Rainer, Q., Minier, F., Surget, A., & Belzung, C. (2012). Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology, 63(3), 374-384. doi: 10.1016/j.neuropharm.2012.04.022 Teyler, T. J., & DiScenna, P. (1987). Long-term potentiation. Annu Rev Neurosci, 10, 131-161. doi: 10.1146/annurev.ne.10.030187.001023 Thompson, W. R., & Heron, W. (1954). The effects of restricting early experience on the problem-solving capacity of dogs. Can J Psychol, 8(1), 17-31. Traiffort, E., Charytoniuk, D., Watroba, L., Faure, H., Sales, N., & Ruat, M. (1999). Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci, 11(9), 3199-3214. Ulloa, F., & Briscoe, J. (2007). Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle, 6(21), 2640-2649. Valero, J., Espana, J., Parra-Damas, A., Martin, E., Rodriguez-Alvarez, J., & Saura, C. A. (2011). Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP(Sw,Ind) transgenic mice. PLoS One, 6(2), e16832. doi: 10.1371/journal.pone.0016832 van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci, 25(38), 8680-8685. doi: 10.1523/JNEUROSCI.1731-05.2005 Varela-Nallar, L., & Inestrosa, N. C. (2013). Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci, 7, 100. doi: 10.3389/fncel.2013.00100 Wechsler-Reya, R. J., & Scott, M. P. (1999). Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron, 22(1), 103-114. Weiler, I. J., & Greenough, W. T. (1993). Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc Natl Acad Sci U S A, 90(15), 7168-7171. Wilson, D. I., Langston, R. F., Schlesiger, M. I., Wagner, M., Watanabe, S., & Ainge, J. A. (2013). Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus, 23(5), 352-366. doi: 10.1002/hipo.22095 Woodbury, M. E., & Ikezu, T. (2013). Fibroblast Growth Factor-2 Signaling in Neurogenesis and Neurodegeneration. J Neuroimmune Pharmacol. doi: 10.1007/s11481-013-9501-5 Worlitzer, M. M., Viel, T., Jacobs, A. H., & Schwamborn, J. C. (2013). The majority of newly generated cells in the adult mouse substantia nigra express low levels of Doublecortin, but their proliferation is unaffected by 6-OHDA-induced nigral lesion or Minocycline-mediated inhibition of neuroinflammation. Eur J Neurosci, 38(5), 2684-2692. doi: 10.1111/ejn.12269 Xu, Y., Tamamaki, N., Noda, T., Kimura, K., Itokazu, Y., Matsumoto, N., . . . Ide, C. (2005). Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol, 192(2), 251-264. doi: 10.1016/j.expneurol.2004.12.021 Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A., & Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell, 93(5), 755-766. Yoshimura, S., Takagi, Y., Harada, J., Teramoto, T., Thomas, S. S., Waeber, C., . . . Moskowitz, M. A. (2001). FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A, 98(10), 5874-5879. doi: 10.1073/pnas.101034998 Zhang, R. R., Cui, Q. Y., Murai, K., Lim, Y. C., Smith, Z. D., Jin, S., . . . Xu, G. L. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2), 237-245. doi: 10.1016/j.stem.2013.05.006 Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R. M., Johansson, C. B., . . . Janson, A. M. (2003). Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A, 100(13), 7925-7930. doi: 10.1073/pnas.1131955100 |
Description: | 碩士 國立政治大學 神經科學研究所 99754004 102 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0099754004 |
Data Type: | thesis |
Appears in Collections: | [神經科學研究所] 學位論文
|
Files in This Item:
File |
Size | Format | |
400401.pdf | 1845Kb | Adobe PDF2 | 1421 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|