English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50955340      Online Users : 957
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/64373
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/64373


    Title: 延展式區域三元化圖形特徵描述子之比例式降維法
    Commensurate Dimensionality Reduction in Extended Local Ternary Patterns
    Authors: 余浩瑋
    Contributors: 廖文宏
    余浩瑋
    Keywords: 特徵描述
    區域二元化圖形
    延展式區域三元化圖形
    比例式降維法
    模糊理論
    紋理影像辨識
    feature descriptor
    local binary pattern
    extend local ternary pattern
    commensurate dimensionality reduction
    fuzzy logic
    texture classification
    Date: 2012
    Issue Date: 2014-03-03 15:38:56 (UTC+8)
    Abstract: 區域二/三元化樣式與其各種變型被廣泛應用於物件辨識中的特徵描述,然而現有的區域特徵描述方式,普遍存在適用時機的問題,也就是針對不同類型的圖像資料庫,必須選用符合該圖片性質的描述法,方能達到較佳的辨識效果,舉例而言,處理材質影像時多使用uniform pattern,而進行人臉偵測或表情辨識時則多採用一般型的區域二/三元化樣式。

    本論文的目標是建構一個通用型的區域三元化樣式,使其一體適用於各類圖型辨識的任務,我們以延展式區域三元化樣式(Extended local ternary patterns, ELTP)為基礎,探討各種降維演算法的結合機制,並提出可行的樣式定義方法,我們針對ETLP 中的uniform pattern定義重新思考,藉由大規模實驗與統計,探討各類uniform pattern 的從屬關係與出現比例,並依據比例原則,在降維階段分配適當之維度,稱之為比例式降維法。

    本論文針對比例式降維後的ELTP之抗噪性、描述力與通用性進行深度的分析與廣泛的實驗,以驗證此類圖像描述方法之效能。此外,由於特徵樣式的編碼在某些情況下,容易受到雜訊影響而產生變化,因此我們亦提出了結合模糊理論的方式加以改善。以上改良方式之效果,都在各式實驗中獲得驗證。
    Local binary/ternary pattern and its derivatives have been widely employed to represent low-level features in many pattern recognition tasks. However, existing local descriptors fail to achieve universal applicability in the sense that specific types of local binary patterns are better suited for certain collections of images. For example, uniform local binary patterns are preferred when dealing with textures, while regular local binary/ternary patterns are adopted for face detection and facial expression recognition.

    This thesis proposes a universally applicable local descriptor based on the extended local ternary pattern (ELTP) to address the above concern. We exploit the feasibility of combining dimensionality reduction techniques to derive a novel local descriptor that is suitable for all kinds of object recognition applications. Specifically, we investigate all possible definitions of uniform patterns under ternary encoding scheme and study their properties. This enables us to devise a dimensionality assignment algorithm in which the allocated dimension is proportional to the appearance rate of the corresponding pattern group.

    The newly defined extend local ternary pattern using commensurate dimensionality reduction (ELTP-CDR) technique has been extensively tested to analyze its universality, discriminability, and noise sensitivity. To further enhance the robustness of this class of local descriptor, we also incorporate fuzzy logic to derive fuzzy representations of the original ELTP. The efficacy of the proposed methods has been validated through several experiments targeted at texture recognition tasks.
    Reference: [1] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, July 2002.
    [2] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int`l J. Computer Vision, vol. 2, no. 60, pp. 91-110, 2004.
    [3] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, “SURF: Speeded Up Robust Features”, Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008.
    [4] A. Alahi, R. Ortiz, P. Vandergheynst, “FREAK: Fast Retina Keypoint”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
    [5] S. Leutenegger, M. Chli, R. Y. Siegwart, “BRISK: Binary Robust Invariant Scalable Keypoints”, IEEE International Conference on Computer Vision (ICCV), 2011.
    [6] W. H. Liao, “Region Description Using Extended Local Ternary Patterns”, Proceedings of the 20th International Conference on Pattern Recognition, pp. 1003-1006, 2010.
    [7] X. Tan and B. Triggs. “Enhanced local texture feature sets for face recognition under difficult lighting conditions”. In Analysis and Modeling of Faces and Gestures, volume 4778 of LNCS, pages 168–182. Springer, 2007.
    [8] A. Shobeirinejad and Y. S. Gao, “Gender Classification Using Interlaced Derivative Patterns“, Proceedings of the 20th International Conference on Pattern Recognition, pp. 1509-1512, 2010.
    [9] T. Ojala, M. Pietikainen and T. Maenpaa, ”Multi-resolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24(7), pp.971-987. July 2002.
    [10] M. Heikkilä, M. Pietikäinen and C. Schmid, “Description of Interest Regions with Center-Symmetric Local Binary Patterns”, Computer Vision, Graphics and Image Processing, Lecture Notes in Computer Science, 2006.
    [11] T. Ahonen, M. Pietikainen, “Soft Histograms for Local Binary Patterns”, in Proc. Fin. Signal Process. Symp., Oulu, Finland, 2007.
    [12] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters”, Journal of Cybernetics 3: 32-57, 1973
    [13] R. Krishnapuram, A. Joshi, L. Yi, “A Fuzzy Relative of the k-Medoids Algorithm with Application to Web Document and Snippet Clustering”, Snippet Clustering, in Proc. IEEE Intl. Conf. Fuzzy Systems - FUZZIEEE99, Korea, 1999.
    [14] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application to Face Recognition”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.2037-2041, Dec. 2006.
    [15] N. P. Doshi, G. Schaefer, “A Comprehensive Benchmark of Local Binary Pattern Algorithms for Texture Retrieval”, International Conference on Pattern Recognition (ICPR), 2012.
    [16] Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., Zisserman, A., “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results”, http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
    Description: 碩士
    國立政治大學
    資訊科學學系
    98753030
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098753030
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    303001.pdf5934KbAdobe PDF2267View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback