Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/64334
|
Title: | 馬可夫狀態轉換市場下之選擇權定價:雙重 Esscher trnasform 下馬可夫可調控高斯HJM 模型 Valuation Of Options In A Markovian Regime-Switching Market : Markov-Modulated Gaussian HJM Model by Double Esscher Transform |
Authors: | 李章益 Li, Chang Yi |
Contributors: | 陳松男 江彌修 Chen, Son Nan Chiang, Mi Hsiu 李章益 Li, Chang Yi |
Keywords: | 歐式選擇權 馬柯夫鏈 卜松過程 波動叢聚 European-style options Markov chain Poisson process Esscher transform volatility clustering |
Date: | 2013 |
Issue Date: | 2014-03-03 15:32:57 (UTC+8) |
Abstract: | 有越來越多的學術研究顯示,在著名的 Black-Scholes 金融市場下幾何布朗運動並不能描述一些標的資產價數據中,比如標的資產的報酬的分布有厚尾、偏斜、及波動叢聚的現象,而馬可夫可調控狀態轉換的金融保險模型似乎比相對於經典的金融保險模型而言,更能貼近現實中的金融數據。在風險的觀點中,馬可夫可調控的模型有這樣一個優點: 此模型可以隨外界環境 (經濟體的好壞、政府的政策等) 改變自身模型的風險,使得證劵公司進而可以調整自身的政策。
另外一方面,在傳統上 Esscher transform 的測度轉換架構下,無法有足夠的自由度(解集合)使得在馬可夫可調控的狀態轉換過程下之資產動態達到平睹過程的條件,因此本篇論文也致力於發展雙重 Esscher transform 的轉換技巧,使得標的資產可以使用兩種不同的馬可夫鍊容納吸收來自經濟體雙重影響。 The celebrated Black-Scholes financial market is based on a geometric Brownian motion to capture the price dynamics of underlying assets. However, a lot of academic studies reveal that this assumption for assets price dynamics cannot provide realistic description for some important empirical behavior of financial returns such as a kurtosis, a skewness, and volatilities clustering the return’s distribution. Compared with the classical risk model or finance model, the Markov-modulated model or Markovian regime-switching model can provide a better fit to the reality data of insurance and finance. In risk or financial theory, regime-switching risk under Markov-modulated process can capture the feature such that changed environment, such as economic growth or recession, government political, which helps the insurance policies of insurance companies to change their policies.
On the other hand, classical Esscher transform cannot provide sufficient degree of freedom, which is solution of set, such that the underlying assets under Markov-modulated regime-switching process are a martingale process. Hence, this paper is also devoted to considering the mythology of double Esscher transform which accommodate two different Markov chain capturing different effects on economics. |
Reference: | Abate, J., Whitt, W., 1992. Numerical inversion of probability generating functions. Operations Research Letters 12, 245-251.
Amin, K.I., Jarrow, R.A., 1991. Pricing foreign currency option under stochastic interest rates. Journal of International Money and Finance 10, 310-329.
Bansal, R., Zhou, H., 2002. Term structure of interest rates with regime shifts. Journal of Finance 5, 1997-2043.
Biger, N., Hull, J., 1983. The valuation of currency option. Financial Management 12, 24-28.
Bo, L., Wang., Y., Yang, X., 2010. Markov-modulated jump-diffusions for currency option pricing. Insurance: Mathematics and Economics 46, 461-469.
Bollen, N.P.B., Gray, S.F., Whaley, R.E., 2000. Regime switching in foreign exchange rates: Evidence from currency option prices. Journal of Econometrics 94, 239-276.
Dahlquist, M., Gray, S.F., 2000. Regime-switching and interest rates in the European Monetary system. Journal of International Economics 50, 399-419.
Dempster, A.P., Larid, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.
Dijkstra, T.K., Yao, Y., 2002. Moment generating function approach to pricing interest rate and foreign exchange rate claims. Insurance: Mathematics and Economics 31, 163-178.
Elliott, R.J., 1976. Double martingales. Probability Theory and Related Fields 34, 17-28.
Elliott, R.J., Chan, L.L., Siu, T.K., 2005. Option pricing and Esscher transform under regime switching. Annals of Finance 1, 423-432.
Elliott, R. J., Malcolm, W.P., Tsoi, A. H., 2003. Robust parameter estimation for asset price models with Markov modulated volatilities. Journal of Economic Dynamics and Control 27, 1391-1409.
Elliott, R.J., Siu, T.K., and Lau, J.W., 2007. Pricing options under a generalized Markov modulated jump diffusion model. Stochastic analysis and applications 25,821-843.
Elliott, R.J. and Swishchuk, A. V., 2007. Pricing options and variance swaps in Markov-modulated Brownian markets. Hidden Markov models in finance, p45-68.
Estrella, A., Hardouvelis, G. A., 1991. The term structure as a predictor of real economic activity. The Journal of Finance 46, 555-576.
Evans, Marttin D.D., 1998. Rwgimw shifts, risk and the term structure, working paper, Department of economics, Georgetown University.
Garcia, Rene, and Perron, P., 1996. An analysis of the real interest rate under regime shifts. Review of Economics and Statistic 78, 111-125.
Garman, M., Kohlhangen, S., 1983. Currency option values. Journal of International Money and Finance 2, 239-253.
Gerber, H.U., Shiu, E.S.W., 1994. Option pricing by Esscher transform. Transactions of Society of Actuaries 46, 99-140.
Gray, S.F., 1996. Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics 42, 27-62.
Guo, X. 2001. Informtion and option pricings. Quantitative Fiance 1, 38-44.
Hamilton, J.D., 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometica 57, 357-384.
Hamilton, J.D., Susmel, R., 1994. Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics 64, 307-333.
Harvey, C. R., 1989. Forecasts of economic growth from the bond and stock markets. Financial Analysts Journal 45, 38-45.
Heath, D., Jarrow, R., Morton, A., 1992. Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation. Econometrica 60, 77-105.
Husmann, S., Todorova, N., 2011. CAPM option pricing. Finance Research Letters 8, 213-219.
Hsu, P.-P., Chen, Y.-H., 2012. Barrier option pricing for exchange rates under the Levy-HJM processes. Finance Research Letters 9, 176-181.
Jarrow, R. A., 2011. Credit market equilibrium theory and evidence: Revisiting the structural versus reduced form credit risk model debate. Finance Research Letters 8, 2-7.
Jarrow, R.A., Madan, D, B., 1997. Is mean-variance analysis vacuous: or was beta still born? European Finance Review 1, 15-30.
Johnson, G., Schneeweis, T., 1994. Jump-diffusion processes in the foreign exchange markets and the release of macroeconomic news. Computational Economics 7, 309-329.
Jorion, P., 1988. On jump processes in the foreign exchange and stock markets. Review of Financial of Financial Studies 1, 427-455.
Ku, H., Lee, K., Zhu, H., 2012. Discrete time hedging with liquidity risk. Finance Research Letters 9, 135-143.
Lange, K.A., 1995. Gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 57, 425-437.
Last, G., Brandt, A., 1995. Marked Point Processes on the Real Line: The Dynamic Approach. New York : Springer-Verlag
Leland, H.E., 1985. Option pricing and replication with transactions costs. Journal of Finance 40, 1283-1301.
Mamon, R.S., Rodrigo, M.R., 2005. Explicit solutions to European options in a regime-switching economy. Operations Research Letters 33, 581-586.
Meng, X.L., Rubin, D.B., 1991. Using EM to obtain asymptotic variance-covariance: the SEM algorithm. Journal of the American Statistical Association 86, 899-909.
Merton, R.C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3, 125-144.
Musiela, M., Rutkowski, M., 2005. Martingale methods in financial modeling, 2nd ed. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg.
Naik, V., 1993. Option valuation and hedging strategies with jumps in the volatility of asset reuturns. Journal of Finance 78,1969-1984.
Nakatsuma, T., 2000. Structural changes in volatility of Foreign exchange rates after the Asian financial crisis. Asia-pacific Financial Markets 7, 62-82.
Pedler, P.J., 1971. Occupation times for two state Markov chain. Journal of Applied probability 8, 381-390.
Reiner, E., 1992. Quanto mechanics. Risk 5, 59-63.
Simonato, J.-G., 2011. Computing American option prices in the lognormal jump-diffusion framework with a Markov chain. Finance Research Letters 8, 220-226.
Shen, Y., Fan, K., and Siu T. K., 2013. Options valuation under a double regime-switching model. Journal of Futures Markets 28. Published online in Wiley Library.
Siu, T.K., 2008. A game theoretic approach to option valuation under Markovian regime-switching models. Insurance: Mathematics and Economics 42, 1146-1158.
Siu, T.K., Yang, H., Lau, J.W. (2008) pricing Curency options under two-Factor Markov modulated stochastic volatility models. Insurance: Mathematics and Economics 43,295-302.
Timmermann, A., 2000. Moments of Markov switching models. Journal of Econometrics 96, 75-111.
Valchev, S., 2004. Stochastic volatility Gaussian Heath-Jarrow-Morton models. Applied Mathematical Finance 11, 347-368.
Xu, W., Xu, W., Li, H., Xiao, W., 2012. A jump-diffusion approach to modelling vulnerable option pricing. Finance Research Letters 9, 48-56.
Zhu, X., 2011. A note on the predictability of excess bond returns and regime shifts. Finance Research Letters 8, 101-109.
Zumbach, G., 2012. Option pricing and ARCH processes. Finance Research Letters 9, 144-156.
Zhang, X., Elliott R.J., Siu, T.K., Guo, J., 2012. Markovian regime-switching market completion using additional Markov jump assets. IMA journal of Management Mathematics 23, 283-305. |
Description: | 博士 國立政治大學 金融研究所 96352501 102 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0963525011 |
Data Type: | thesis |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
501101.pdf | | 752Kb | Adobe PDF2 | 316 | View/Open | index.html | | 0Kb | HTML2 | 501 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|