English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52147196      Online Users : 576
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/63533


    Title: Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation
    Authors: 郭光宇
    Guo, Guang-Yu
    Contributors: 應物所
    Date: 2010.10
    Issue Date: 2014-01-24 12:36:12 (UTC+8)
    Abstract: The optical response of a multilayered spherical system of unlimited number of layers (a “matryoshka”) in the long wavelength limit can be accounted for from the knowledge of the static multipole polarizability of the system to first-order accuracy. However, for systems of ultrasmall dimensions or systems with sizes not-too-small compared to the wavelength, this ordinary quasistatic long wavelength approximation (LWA) becomes inaccurate. Here we introduce two significant modifications of the LWA for such a nanomatryoshka in each of the two limits: the nonlocal optical response for ultrasmall systems , and the “finite-wavelength corrections” for systems . This is accomplished by employing the previous work for a single-layer shell, in combination with a certain effective-medium approach formulated recently in the literature. Numerical calculations for the extinction cross sections for such a system of different dimensions are provided as illustrations for these effects. This formulation thus provides significant improvements on the ordinary LWA, yielding enough accuracy for the description of the optical response of these nanoshell systems over an appreciable range of sizes, without resorting to more involved quantum mechanical or fully electrodynamic calculations.
    Relation: Physical Review B, 82(16), 165440
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1103/PhysRevB.82.165440
    DOI: 10.1103/PhysRevB.82.165440
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    165440.pdf417KbAdobe PDF21579View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback