English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50955148      Online Users : 953
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/61196
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/61196


    Title: 透過圖片標籤觀察情緒字詞與事物概念之關聯
    An analysis on association between emotion words and concept words based on image tags
    Authors: 彭聲揚
    Peng, Sheng-Yang
    Contributors: 劉吉軒
    Liu, Jyi-Shane
    彭聲揚
    Peng, Sheng-Yang
    Keywords: 情緒分類
    情緒檢索
    情緒詞
    社群網路
    字詞共現
    關聯 規則
    影像與情緒
    sentiment classification
    sentiment retrieval
    sentiment words
    word co-occurrence
    association rules
    image and emotion
    social network
    Date: 2010
    Issue Date: 2013-10-01 13:46:41 (UTC+8)
    Abstract: 本研究試圖從心理學出發,探究描述情緒狀態的分類方法為何,
    為了進行情緒與語意的連結,我們試圖將影像當作情緒狀態的刺激
    來源,針對Flickr網路社群所共建共享的內容進行抽樣與觀察,使
    用心理學研究中基礎的情緒字詞與詞性變化,提取12,000張帶有字
    詞標籤的照片,進行標籤字詞與情緒分類字詞共現的計算、關聯規則
    計算。同時,透過語意差異量表,提出了新的偏向與強度的座標分類
    方法。
    透過頻率門檻的過濾、詞性加註與詞幹合併字詞的方法,從
    65983個不重複的文字標籤中,最後得到272個帶有情緒偏向的事物
    概念字詞,以及正負偏向的情緒關聯規則。為了透過影像驗證這些字
    詞是否與影像內容帶給人們的情緒狀態有關聯,我們透過三種查詢
    管道:Flickr單詞查詢、google image單詞查詢、以及我們透過照片
    標籤綜合指標:情緒字詞比例、社群過濾參數來選定最後要比較的
    42張照片。透過語意差異量表,測量三組照片在136位使用者的答案
    中,是否能吻合先前提出的強度-偏向模型。
    實驗結果發現,我們的方法和google image回傳的結果類似,
    使用者問卷調查結果支持我們的方法對於正負偏向的判定,且比
    google有更佳的強弱分離程度。
    This study attempts to proceed from psychology to explore the emotional
    state of the classification method described why, in order to be emotional and
    semantic links, images as we try to stimulate the emotional state of the source,
    the Internet community for sharing Flickr content sampling and observation,
    using basic psychological research in terms of mood changes with the parts of
    speech, with word labels extracted 12,000 photos, label and classification of
    words and word co-occurrence of emotional computing, computing association
    rules. At the same time, through the semantic differential scale, tend to put
    forward a new classification of the coordinates and intensity.
    Through the frequency threshold filter, filling part of speech combined
    with the terms of the method stems from the 65,983 non-duplicate text labels,
    the last 272 to get things with the concept of emotional bias term, and positive
    and negative emotions tend to association rules. In order to verify these words
    through images is to bring people`s emotional state associated with our pipeline
    through the three sources: Flickr , google image , and photos through our index
    labels: the proportion of emotional words, the community filtering parameters to
    select the final 42 photos to compare. Through the semantic differential scale,
    measuring three photos in 136 users of answers, whether the agreement made
    earlier strength - bias model. Experimental results showed that our methods and
    google image similar to the results returned, the user survey results support our
    approach to determine the positive and negative bias, and the strength of better
    than google degree of separation.
    Reference: [1] J. Darley, S. Glucksberg, R. Kinchla ,Psychology , Prentice Hall College Div.5th
    edition ,1991.
    [2] E. Fox, Emotion Science: Cognitive and Neuroscientific Approaches to
    Understanding Human Emotions. Palgrave Macmillan, Sep. 2008.
    [3] R. W. Picard, E. Vyzas, and J. Healey, "Toward machine emotional intelligence:
    Analysis of affective physiological state", IEEE Transactions on Pattern Analysis and
    Machine Intelligence, vol. 23, no. 10, pp. 1175-1191, Oct. 2001.
    [4] R. W. Picard, Affective computing. The MIT Press, 1997.
    [5] P Shaver, J Schwartz, D Kirson, `` Emotion knowledge: Further exploration of a
    prototype approach``. Journal of Personality and Social Psychology, Vol 52(6), 1061-
    1086, 1987.
    [6] MJ. Power, T. Dalgleish, Cognition and emotion. From order to disorder. Hove, East
    Sussex, UK: Psychology Press, 1997.
    [7] C.E. Izard, The Psychology of Emotions, New York, London: Plenum Press, 1991
    [8] J.A. Russell, “A circumplex model of affect”. Journal of Personality and Social
    Psychology, 39(6):1161-1178, 1980.
    [9] J. Posner, J. A. Russell, and B. S. Peterson, "The circumplex model of affect: An
    integrative approach to affective neuroscience, cognitive development, and
    psychopathology", Development and Psychopathology, vol. 17, no. 03, pp. 715-734,
    2005.
    86








    N a t i on a l Ch e n g c h i U n i v e r s i t y
    [10] R. Valitutti, "WordNet-affect:an affective extension of WordNet". Proceedings of the
    4th International Conference on Language Resources and Evaluation, vol. 2004, pp.
    1083-1086, 2004.
    [11] B. Sigurbjörnsson and R. van Zwol, "Flickr tag recommendation based on collective
    knowledge". Proceeding of the 17th international conference on World Wide Web, ser.
    WWW `08. New York, NY, USA: ACM, pp. 327-336, 2008.
    [12] R. Jonathon Read, “Recognising affect in text using pointwise-mutual information”.
    master degree thesis ,University of Sussex , 2004.
    [13] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules". Proc. 20th
    Int. Conf. Very Large Data Bases, VLDB, pp. 487-499, 1994.
    [14] M. F. Porter, "An algorithm for suffix stripping". Program, vol. 14, no. 3, pp. 130-137,
    1980.
    [15] D. A. Hull, "Stemming algorithms: A case study for detailed evaluation". Journal of
    the American Society for Information Science, vol. 47, no. 1, pp. 70-84, Dec. 1998.
    [16] J. Xu and B. W. Croft, "Corpus-Based stemming using cooccurrence of word
    variants". ACM Transactions on Information Systems, vol. 16, no. 1, pp. 61-81, 1998.
    [17] C. E. Osgood, "Semantic differential technique in the comparative study of cultures1,"
    American Anthropologist, vol. 66, no. 3, pp. 171-200, 1964.
    [18] J. Berger , Ways of Seeing. Penguin ,1972 .
    [19] S. Schmidt and W. G. Stock, "Collective indexing of emotions in images. a study in
    emotional information retrieval", Journal of the American Society for Information
    Science and Technology, vol. 60, no. 5, pp. 863-876, 2009.
    [20] J. San Pedro and S. Siersdorfer, "Ranking and classifying attractiveness of photos in
    87








    N a t i on a l Ch e n g c h i U n i v e r s i t y
    folksonomies”. Proceedings of the 18th international conference on World wide web,
    ser. WWW `09. New York, NY, USA: ACM, pp. 771-780, 2009.
    [21] J. Beaudoin, "Folksonomies: Flickr image tagging: Patterns made visible". Bul.
    Am. Soc. Info. Sci. Tech., vol. 34, no. 1, pp. 26-29, 2007.
    [22]鄭學侖,「以web2.0民眾分類法建置音樂推薦系統之研究」,國立政治大學資訊
    管理研究所碩士論文。
    [23] A.J. Gill, D.Gergle, R.M. French, and J.Oberlander, "Emotion rating from short blog
    texts", Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in
    computing systems, ser. CHI `08. New York, NY, USA: ACM, pp. 1121-1124, 2008.
    [24] E. Zheleva, J. Guiver, E. M. Rodrigues, and N. M. Frayling, "Statistical models of
    music-listening sessions in social media", Proceedings of the 19th international
    conference on World wide web, ser. WWW `10. New York, NY, USA: ACM, pp. 1019-
    1028, 2010.
    [25] S. Siersdorfer, E. Minack, F. Deng, and J. Hare, "Analyzing and predicting sentiment
    of images on the social web". Proceedings of the international conference on
    Multimedia, ser. MM `10. New York, NY, USA: ACM, pp. 715-718, 2010.
    [26] G.Grefenstette , “Comparing the Language Used in Flickr, General Web Pages, Yahoo
    Images and Wikipedia”. LREC08 proceedings, 6-11, 2008.
    [27] L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury, "How Flickr helps us
    make sense of the world: context and content in community-contributed media
    collections". Proceedings of the 15th international conference on Multimedia, ser.
    MULTIMEDIA `07. New York, NY, USA: ACM, pp. 631-640, 2007.
    [28] C. Marlow, M. Naaman, D. Boyd, and M. Davis, "HT06, tagging paper, taxonomy,
    88








    N a t i on a l Ch e n g c h i U n i v e r s i t y
    Flickr, academic article, to read". Proceedings of the seventeenth conference on
    Hypertext and hypermedia, ser. HYPERTEXT `06. New York, NY, USA: ACM, pp. 31-
    40, 2006.
    [29] G. Begelman, "Automated tag clustering: Improving search and exploration in the
    tag space". Proceeding of the Collaborative Web Tagging Workshop at WWW`06, 2006.
    [30] 吳筱玫、周芷伊,「Tagging的分類與知識意涵:以Flickr首頁圖片為例」,新聞學
    研究,台北,2009年4月,頁265-305
    [31] Mikels, J. A., Fredrickson, B. L., Larkin, G. R., Lindberg, C. M., Maglio, S. J., and
    Reuter-Lorenz, P. A. (2005). Emotional category data on images from the international
    affective picture system. Behavior Research Methods, 37(4):626-630.
    [32] Lang, P. J. (1995). The emotion probe. studies of motivation and attention. The
    American psychologist, 50(5):372-385.
    [33] Peter Mika. (2007). “Ontologies are us: emergent semantics in folksonomy systems In
    Social Networks and the Semantic Web”. International Semantic Web Conference,
    International Semantic Web Conference (ISWC2005), Vol. 5, No. 1. (March 2007), pp.
    5-15
    Description: 碩士
    國立政治大學
    資訊科學學系
    95753015
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095753015
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    301501.pdf13255KbAdobe PDF21258View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback