Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/61196
|
Title: | 透過圖片標籤觀察情緒字詞與事物概念之關聯 An analysis on association between emotion words and concept words based on image tags |
Authors: | 彭聲揚 Peng, Sheng-Yang |
Contributors: | 劉吉軒 Liu, Jyi-Shane 彭聲揚 Peng, Sheng-Yang |
Keywords: | 情緒分類 情緒檢索 情緒詞 社群網路 字詞共現 關聯 規則 影像與情緒 sentiment classification sentiment retrieval sentiment words word co-occurrence association rules image and emotion social network |
Date: | 2010 |
Issue Date: | 2013-10-01 13:46:41 (UTC+8) |
Abstract: | 本研究試圖從心理學出發,探究描述情緒狀態的分類方法為何,
為了進行情緒與語意的連結,我們試圖將影像當作情緒狀態的刺激
來源,針對Flickr網路社群所共建共享的內容進行抽樣與觀察,使
用心理學研究中基礎的情緒字詞與詞性變化,提取12,000張帶有字
詞標籤的照片,進行標籤字詞與情緒分類字詞共現的計算、關聯規則
計算。同時,透過語意差異量表,提出了新的偏向與強度的座標分類
方法。
透過頻率門檻的過濾、詞性加註與詞幹合併字詞的方法,從
65983個不重複的文字標籤中,最後得到272個帶有情緒偏向的事物
概念字詞,以及正負偏向的情緒關聯規則。為了透過影像驗證這些字
詞是否與影像內容帶給人們的情緒狀態有關聯,我們透過三種查詢
管道:Flickr單詞查詢、google image單詞查詢、以及我們透過照片
標籤綜合指標:情緒字詞比例、社群過濾參數來選定最後要比較的
42張照片。透過語意差異量表,測量三組照片在136位使用者的答案
中,是否能吻合先前提出的強度-偏向模型。
實驗結果發現,我們的方法和google image回傳的結果類似,
使用者問卷調查結果支持我們的方法對於正負偏向的判定,且比
google有更佳的強弱分離程度。 This study attempts to proceed from psychology to explore the emotional
state of the classification method described why, in order to be emotional and
semantic links, images as we try to stimulate the emotional state of the source,
the Internet community for sharing Flickr content sampling and observation,
using basic psychological research in terms of mood changes with the parts of
speech, with word labels extracted 12,000 photos, label and classification of
words and word co-occurrence of emotional computing, computing association
rules. At the same time, through the semantic differential scale, tend to put
forward a new classification of the coordinates and intensity.
Through the frequency threshold filter, filling part of speech combined
with the terms of the method stems from the 65,983 non-duplicate text labels,
the last 272 to get things with the concept of emotional bias term, and positive
and negative emotions tend to association rules. In order to verify these words
through images is to bring people`s emotional state associated with our pipeline
through the three sources: Flickr , google image , and photos through our index
labels: the proportion of emotional words, the community filtering parameters to
select the final 42 photos to compare. Through the semantic differential scale,
measuring three photos in 136 users of answers, whether the agreement made
earlier strength - bias model. Experimental results showed that our methods and
google image similar to the results returned, the user survey results support our
approach to determine the positive and negative bias, and the strength of better
than google degree of separation. |
Reference: | [1] J. Darley, S. Glucksberg, R. Kinchla ,Psychology , Prentice Hall College Div.5th
edition ,1991.
[2] E. Fox, Emotion Science: Cognitive and Neuroscientific Approaches to
Understanding Human Emotions. Palgrave Macmillan, Sep. 2008.
[3] R. W. Picard, E. Vyzas, and J. Healey, "Toward machine emotional intelligence:
Analysis of affective physiological state", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 10, pp. 1175-1191, Oct. 2001.
[4] R. W. Picard, Affective computing. The MIT Press, 1997.
[5] P Shaver, J Schwartz, D Kirson, `` Emotion knowledge: Further exploration of a
prototype approach``. Journal of Personality and Social Psychology, Vol 52(6), 1061-
1086, 1987.
[6] MJ. Power, T. Dalgleish, Cognition and emotion. From order to disorder. Hove, East
Sussex, UK: Psychology Press, 1997.
[7] C.E. Izard, The Psychology of Emotions, New York, London: Plenum Press, 1991
[8] J.A. Russell, “A circumplex model of affect”. Journal of Personality and Social
Psychology, 39(6):1161-1178, 1980.
[9] J. Posner, J. A. Russell, and B. S. Peterson, "The circumplex model of affect: An
integrative approach to affective neuroscience, cognitive development, and
psychopathology", Development and Psychopathology, vol. 17, no. 03, pp. 715-734,
2005.
86
‧
國
立
政
治
大
學
‧
N a t i on a l Ch e n g c h i U n i v e r s i t y
[10] R. Valitutti, "WordNet-affect:an affective extension of WordNet". Proceedings of the
4th International Conference on Language Resources and Evaluation, vol. 2004, pp.
1083-1086, 2004.
[11] B. Sigurbjörnsson and R. van Zwol, "Flickr tag recommendation based on collective
knowledge". Proceeding of the 17th international conference on World Wide Web, ser.
WWW `08. New York, NY, USA: ACM, pp. 327-336, 2008.
[12] R. Jonathon Read, “Recognising affect in text using pointwise-mutual information”.
master degree thesis ,University of Sussex , 2004.
[13] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules". Proc. 20th
Int. Conf. Very Large Data Bases, VLDB, pp. 487-499, 1994.
[14] M. F. Porter, "An algorithm for suffix stripping". Program, vol. 14, no. 3, pp. 130-137,
1980.
[15] D. A. Hull, "Stemming algorithms: A case study for detailed evaluation". Journal of
the American Society for Information Science, vol. 47, no. 1, pp. 70-84, Dec. 1998.
[16] J. Xu and B. W. Croft, "Corpus-Based stemming using cooccurrence of word
variants". ACM Transactions on Information Systems, vol. 16, no. 1, pp. 61-81, 1998.
[17] C. E. Osgood, "Semantic differential technique in the comparative study of cultures1,"
American Anthropologist, vol. 66, no. 3, pp. 171-200, 1964.
[18] J. Berger , Ways of Seeing. Penguin ,1972 .
[19] S. Schmidt and W. G. Stock, "Collective indexing of emotions in images. a study in
emotional information retrieval", Journal of the American Society for Information
Science and Technology, vol. 60, no. 5, pp. 863-876, 2009.
[20] J. San Pedro and S. Siersdorfer, "Ranking and classifying attractiveness of photos in
87
‧
國
立
政
治
大
學
‧
N a t i on a l Ch e n g c h i U n i v e r s i t y
folksonomies”. Proceedings of the 18th international conference on World wide web,
ser. WWW `09. New York, NY, USA: ACM, pp. 771-780, 2009.
[21] J. Beaudoin, "Folksonomies: Flickr image tagging: Patterns made visible". Bul.
Am. Soc. Info. Sci. Tech., vol. 34, no. 1, pp. 26-29, 2007.
[22]鄭學侖,「以web2.0民眾分類法建置音樂推薦系統之研究」,國立政治大學資訊
管理研究所碩士論文。
[23] A.J. Gill, D.Gergle, R.M. French, and J.Oberlander, "Emotion rating from short blog
texts", Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems, ser. CHI `08. New York, NY, USA: ACM, pp. 1121-1124, 2008.
[24] E. Zheleva, J. Guiver, E. M. Rodrigues, and N. M. Frayling, "Statistical models of
music-listening sessions in social media", Proceedings of the 19th international
conference on World wide web, ser. WWW `10. New York, NY, USA: ACM, pp. 1019-
1028, 2010.
[25] S. Siersdorfer, E. Minack, F. Deng, and J. Hare, "Analyzing and predicting sentiment
of images on the social web". Proceedings of the international conference on
Multimedia, ser. MM `10. New York, NY, USA: ACM, pp. 715-718, 2010.
[26] G.Grefenstette , “Comparing the Language Used in Flickr, General Web Pages, Yahoo
Images and Wikipedia”. LREC08 proceedings, 6-11, 2008.
[27] L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury, "How Flickr helps us
make sense of the world: context and content in community-contributed media
collections". Proceedings of the 15th international conference on Multimedia, ser.
MULTIMEDIA `07. New York, NY, USA: ACM, pp. 631-640, 2007.
[28] C. Marlow, M. Naaman, D. Boyd, and M. Davis, "HT06, tagging paper, taxonomy,
88
‧
國
立
政
治
大
學
‧
N a t i on a l Ch e n g c h i U n i v e r s i t y
Flickr, academic article, to read". Proceedings of the seventeenth conference on
Hypertext and hypermedia, ser. HYPERTEXT `06. New York, NY, USA: ACM, pp. 31-
40, 2006.
[29] G. Begelman, "Automated tag clustering: Improving search and exploration in the
tag space". Proceeding of the Collaborative Web Tagging Workshop at WWW`06, 2006.
[30] 吳筱玫、周芷伊,「Tagging的分類與知識意涵:以Flickr首頁圖片為例」,新聞學
研究,台北,2009年4月,頁265-305
[31] Mikels, J. A., Fredrickson, B. L., Larkin, G. R., Lindberg, C. M., Maglio, S. J., and
Reuter-Lorenz, P. A. (2005). Emotional category data on images from the international
affective picture system. Behavior Research Methods, 37(4):626-630.
[32] Lang, P. J. (1995). The emotion probe. studies of motivation and attention. The
American psychologist, 50(5):372-385.
[33] Peter Mika. (2007). “Ontologies are us: emergent semantics in folksonomy systems In
Social Networks and the Semantic Web”. International Semantic Web Conference,
International Semantic Web Conference (ISWC2005), Vol. 5, No. 1. (March 2007), pp.
5-15 |
Description: | 碩士 國立政治大學 資訊科學學系 95753015 99 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0095753015 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
301501.pdf | | 13255Kb | Adobe PDF2 | 1258 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|