English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52200291      Online Users : 544
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60784


    Title: Implementation of Martian virtual reality environment using very high-resolution stereo topographic data
    Authors: Kim,Jung-Rack;Lin,Shih-Yuan;Hong,Jeong-Woo;Kim,Young-Hwi;Park,Chin-Kang
    Contributors: 政大地政系
    Keywords: Mars;High resolution DTM;Ortho-image;Virtual reality;Stereo analysis;Geomorphology
    Date: 2012-07
    Issue Date: 2013-09-13
    Abstract: Topography over terrestrial or other planetary surfaces is an important base data for virtual reality construction. In particular, with inaccessible topography such as the Martian surface, virtual reality provides great value not only for public interaction but also for scientific research. For the latter application, since field surveys are essential for the geological and geomorphological researches, the virtual reality environment created based on verified topographic products provides an alternative solution for planetary research. The performance of virtual reality implementation over a planetary surface can be assessed by two major factors: (1) The geodetically controlled base topographic products, such as DTM and ortho-image, and (2) Technological integration of topographic products into virtual reality software and hardware. For the first aspect, the multi-resolution stereo analysis approach has already provided a solid basis so that specific topographic data sets over testing areas were generated by the hierarchical processor. To address the second problem, a parallel processor with multiple screen display combining 3D display software was employed in this research. As demonstrated in this paper, the constructed Martian virtual environment showed highly detailed features over the Athabasca Valles (one of former potential Mars Exploration Rover landing sites) and Eberswalde crater (one of the main original landing candidates for the NASA’s rover mission scheduled to launch in late 2011). The employment of such virtual reality environments is expected to be a powerful simulator after integrating a 3D Martian model, engineering and environment constraints for Martian geological and geomorphic researches including landing site selection and rover navigation.
    Relation: Computer & Geosciences, 44, 184-195
    Data Type: article
    DOI 連結: http://dx.doi.org/http://dx.doi.org/10.1016/j.cageo.2011.09.018
    DOI: 10.1016/j.cageo.2011.09.018
    Appears in Collections:[地政學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    184195.pdf2790KbAdobe PDF21086View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback