English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50800147      Online Users : 829
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60780


    Title: 不同人工神經網路架構在不動產大量估價之應用與比較
    Other Titles: Complex Structures of Artificial Neural Network Comparison and Application on Real Estate Mass Appraisal
    Authors: 沈育生;林秋瑾
    Shen,Yu-Sheng;Lin,Chiu-Chin Vickey
    Contributors: 政大地政系
    Keywords: 人工神經網路架構;不動產大量估價;多元迴歸;分析多層函數連結網路;倒傳遞網路;輻狀基底函數網路
    Real estate mass appraisal;Structures of artificial neural network;Back-propagation network;Multilayer functional-link network;Radial basis function network;Multiple regression analysis
    Date: 2012-05
    Issue Date: 2013-09-13
    Abstract: 在因次貸所引起的金融風暴後,金融界比過往更加重視信用風險的議題,而此風暴起源自房價的下跌導致房貸商品的大量違約。違約產生於兩個面向:無意願支付和無能力支付,有無意願支付和抵押品的價值有關;而有無能力支付則和家計的所得及月付額變動有關。過往的文獻多數是專注於分析前者,但事實上違約的發生,不僅牽涉於抵押品的價格,是否能還款的支付壓力更是一個重要的因素,換言之,估計房貸商品的信用風險,需要同時考慮還款支付壓力、房價趨勢、利率以及所得波動等因素。本研究對傳統型與非傳統型的房貸商品其信用風險進行比較,信用風險本身無形且難直接測量,所以必須找到一個衡量指標。本研究首先模擬這些房貸商品的現金流量,而後計算出兩個風險指標:負權益機率和月付額短缺機率,用以評估這些產品的信用風險。本研究結果顯示,次級房貸商品在壓力經濟情境下,將產生大量違約;而新金融商品住宅增值參與證券的發行則有穩定房屋市場的功能。
    Real estate prices affect the compensation of land acquisition, the cost and benefit of land development, and the investment of real estate. Thus, how to evaluate and predict the price of real estate precisely plays an important role in land economics research. This study uses both hedonic multiple regression method (MRA) and different artificial neural networks (ANN) to build models for evaluating and predicting on housing prices. We used the Year 2006 to 2008 data of housing transactions in Taipei City. The empirical results reveal that ANN can be a better alternative for predicting of housing prices. Among the different ANN housing prices models, the best predicting performance show at Multilayer Functional-Link Network (MFLN). In comparing network architecture, it indicates that more hidden layers and more attributes make the model more complicated and make the procedure converge slowly. In Back-Propagation Network (BPN), 2-layer model performs better than other network models in fitted-modeling and forecast accuracy, whereas it shows the performance of 1-layer model is better than 2-layer hidden model for both Multilayer Functional-Link Network (MFLN) and Radial Basis Function Network (RBFN).
    Relation: 台灣土地研究, 15(1), 1-29
    Data Type: article
    Appears in Collections:[地政學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    151129.pdf1309KbAdobe PDF2977View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback