Reference: | [1] S. Basu, M. Meckesheimer, Automatic outlier detection for time series: an application to sensor data, Knowl. Inf. Syst. 11 (2007) 137-154. [2] Carl de Boor, A Practical Guide to Splines, Springer-Verlag, 1978. [3] Carl de Boor, A Practical Guide to Splines, Revised Edition, Springer-Verlag, 2001. [4] L. Breima, Fitting additive models to regression data, Comput. Statist. Data Anal. 15 (1993) 13-46. [5] Peter Bühlmann, H.R. Künsch, Block length selection in the bootstrap for time series, Comput. Statist. Data Anal. 31 (1999) 295-310. [6] I. Chang, G.C. Tiao, C. Chen, Estimation of time series parameters in the presence of outliers, Technometrics 30 (1988) 193-204. [7] M.R. Chernick, Bootstrap Methods, A practitioner’s guide, Wiley Series in Probability and Statistics, 1999. [8] B.M. Colosime, M. Pacella, On the Use of Principal Component Analysis to Identify Systimatic Patterns in Foundness Profiles, Qual. Reliab. Eng. Int. 23 (2007) 707-725. [9] A.C. Davison, D. Hinkley, Bootstrap Methods and their Application, 8th ed., Cambridge: Cambridge Series in Statistical and Probabilistic Mathematics, 2006. [10] D.G.T. Denison, B.K. Mallick, A.F. Smith, Automatic Bayesian curve fitting, J. Roy. Statist. Soc. B 60 (1998) 333-350. [11] Y. Ding, L. Zeng, S. Zhou, Phase I Analysis for Monitoring Nonlinear Profiles in Manufacturing Processes, J. Qual. Technol. 38 (2006) 199-216. [12] J.H. Friedman, B.W. Silverman, Flexible parsimonious smoothing and additive modeling (with discussion), Technometrics 31 (1989) 3-39. [13] P.J. Green, B.W. Silverman, Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, Chapman and Hall, 1994. [14] P. Hall, J.L. Horowitz, B-Y. Jing, On blocking rules for the bootstrap with dependent data, Biometrika 82 (1995) 561-674. [15] T.J. Hasite, R.J. Tibshirani, Generalized Additive Models, Chapman and Hall, 1990. [16] W.A. Jensen, J.B. Birch, Progile Monitoring via Nonlinear Mixed Models, J. Qual. Technol. 41 (2009) 18-34. [17] W.A. Jensen, J.B. Birch, W.H. Woodall, Monitoring correlation within linear profiles using mixed models, J. Qual. Technol. 40 (2008) 167-183. [18] L. Kang, S.L. Albin, On-Line Monitoring When the Process Yields a Linear Profile, J. Qual. Technol. 32 (2000) 418-426. [19] R.B. Kazemzadeh, R. Noorossana, A. Amiri, Phase I Monitoring of Polynomial Profiles, Comm. Statist. Theor. Meth. 37 (2008) 1671-1686. [20] K. Kim, M.A. Mahmoud, W.H. Woodall, On the monitoring of Linear Profiles, J. Qual. Technol. 35 (2003) 317-328. [21] W.H. Kruskal, W.A. Wallis, Use of Ranks in One-Criterion Variance Analysis, J. Amer. Statist. Assoc. 47 (1952) 583-621. [22] H.R. Künsch, The Jackknife and the Bootstrap for General Stationary Observations, Ann. Statist. 17 (1989) 1217-1241. [23] E.K. Lada, J.-C. Lu, J.R. Wilson, A Wavelet-Based Procedure for Process Fault Detection, IEEE. Trans. Semicond. Manuf. 15 (2002) 79-90. [24] S.N. Lahiri, Theoretical comparisons of block bootstrap methods, Ann. Statist. 27 (1999) 386-404. [25] S.N. Lahiri, K. Furukawa, Y.-D. Lee, A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods, Statist. Methodol. 4 (2007) 292-321. [26] D. Lolive, N. Barbot, O. Boeffard, Melodic contour estimation with B-spline models using a MDL criterion, Proceedings of the 11th International Conference on Speech and Computer (SPECOM), Saint Petersburg, Russia, 2006, pp. 333-338. [27] M.A. Mahmoud, W.H. Woodall, Phase I Analysis of Linear Profiles With Calibration Applications, Technometrics 46 (2004) 380-391. [28] S. Mignani, R. Rose, Markov Chain Monte Carlo in Statistical Mechanics: the Problem of Accuracy, Technometrics 43 (2001) 347-355. [29] N. Molinari, J.F. Durand, R. Sabtier, Bounded optimal knots for regression splines, Comput. Statist. Data Anal. 45 (2004) 159-178. [30] D. Pena, Outliers, influential observations, and missing data, In: A course in time series analysis, Wiley, New York, 2001, pp. 136-170. [31] D.N. Politis, J.P. Romano, The Stationary Bootstrap, J. Amer. Statist. Assoc. 89 (1994) 1303-1313. [32] P. Qiu, C. Zou, Z. Wang, Nonparametric Profile Monitoring by Mixed Effects Modeling, Technometrics 52 (2010) 265-277. [33] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, 1990. [34] J.D. Williams, W.H. Woodall, J.B. Birch, Statistical Monitoring of Nonlinear Product and Process Quality Profiles, Qual. Reliab. Eng. Int. 23 (2007) 925-941. [35] J.D. Williams, J.B. Birch, W.H. Woodall, N.M. Ferry, Statistical Monitoring of Heteroscedastic Dose-Response Profiles From High-Throughput Screening, J. Agric. Biol. Envir. Statist. 12 (2007) 216-235. [36] W.H. Woodall, D.J. Spitzner, D.C. Montgomery, S. Gupta, Using Control Charts to Monitor Process and Product Quality Profiles, J. Qual. Technol. 36 (2004) 309-320. [37] W.H. Woodall, Current Research on Profile Monitoring, Revista Producão 17 (2004) 309-320. [38] A.B. Yeh, Bootstrap percentile confidence bands based on the concept of curve depth, Comm. Statist. Simulat. Comput. 25 (1996) 905-922. [39] C. Zou, Y. Zhang, Z. Wang, Control Chart Based on Change-Point Model for Monitoring Linear Profiles, IIE Trans. 38 (2006) 1093-1103. [40] C. Zou, F. Tsung, Z. Wang, Monitoring General Linear Profiles Using Multivariate EWMA Schemes, Technometrics 49 (2007) 395-408. [41] C. Zou, F. Tsung, Z. Wang, Monitoring Profiles Based on Nonparametric Regression Methods, Technometrics 20 (2008) 512-526. [42] P. Hall, Resampling a coverage process, Stoch. Proces. Applic. 20 (1985) 231-246. |