政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60439
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114401/145431 (79%)
造訪人次 : 53166535      線上人數 : 847
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60439
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/60439


    題名: 狀態轉換跳躍相關模型下選擇權定價:股價指數選擇權之實證
    Option pricing under regime-switching jump model with dependent jump sizes: evidence from stock index option
    作者: 李家慶
    Lee, Jia-Ching
    貢獻者: 劉惠美
    林士貴

    Liu, Hui Mei
    Lin, Shih Kuei

    李家慶
    Lee, Jia-Ching
    關鍵詞: 股價指數選擇權
    狀態轉換跳躍相關模型
    波動聚集
    波動度微笑
    EM演算法
    Esscher轉換法
    index option
    regime-switching jump dependent model
    volatility clustering
    volatility smile
    EM algorithm
    Esscher transformation
    日期: 2010
    上傳時間: 2013-09-05 15:12:19 (UTC+8)
    摘要: Black and Scholes (1973)對於報酬率提出以B-S模型配適,但B-S模型無法有效解釋報酬率不對稱高狹峰、波動度微笑、波動度叢聚、長記憶性的性質。Merton (1976)認為不尋常的訊息來臨會影響股價不連續跳躍,因此發展B-S模型加入不連續跳躍風險項的跳躍擴散模型,該模型可同時描述報酬率不對稱高狹峰和波動度微笑兩性質。Charles, Fuh and Lin (2011)加以考慮市場狀態提出狀態轉換跳躍模型,除了保留跳躍擴散模型可描述報酬率不對稱高狹峰和波動度微笑,更可以敘述報酬率的波動度叢聚和長記憶性。本文進一步拓展狀態轉換跳躍模型,考慮不連續跳躍風險項的帄均數與市場狀態相關,提出狀態轉換跳躍相關模型。並以道瓊工業指數與S&P 500指數1999年至2010年股價指數資料,採用EM和SEM分別估計參數與估計參數共變異數矩陣。使用概似比檢定結果顯示狀態轉換跳躍相關模型比狀態轉換跳躍獨立模型更適合描述股價指數報酬率。並驗證狀態轉換跳躍相關模型也可同時描述報酬率不對稱高狹峰、波動度微笑、波動度叢聚、長記憶性。最後利用Esscher轉換法計算股價指數選擇權定價公式,以敏感度分析模型參數對於定價結果的影響,並且市場驗證顯示狀態轉換跳躍相關模型會有最小的定價誤差。
    Black and Scholes (1973) proposed B-S model to fit asset return, but B-S model can’t effectively explain some asset return properties, such as leptokurtic, volatility smile, volatility clustering and long memory. Merton (1976) develop jump diffusion model (JDM) that consider abnormal information of market will affect the stock price, and this model can explain leptokurtic and volatility smile of asset return at the same time. Charles, Fuh and Lin (2011) extended the JDM and proposed regime-switching jump independent model (RSJIM) that consider jump rate is related to market states. RSJIM not only retains JDM properties but describes volatility clustering and long memory. In this paper, we extend RSJIM to regime-switching jump dependent model (RSJDM) which consider jump size and jump rate are both related to market states. We use EM and SEM algorithm to estimate parameters and covariance matrix, and use LR test to compare RSJIM and RSJDM. By using 1999 to 2010 Dow-Jones industrial average index and S&P 500 index as empirical evidence, RSJDM can explain index return properties said before. Finally, we calculate index option price formulation by Esscher transformation and do sensitivity analysis and market validation which give the smallest error of option prices by RSJDM.
    參考文獻: 中文文獻
    [1] 吳聲杰,(2009)。狀態轉換跳躍模型下Supplemented Expectation Maximization 演算法與Gibbs Sampling演算法之參數估計之變異數估計,國立高雄大學統計學研究所碩士論文。
    [2] 林晉煜,(2010)。狀態轉換跳躍模型下權益指數年金之評價公式:股價指數之實證,國立高雄大學統計學研究所碩士論文。
    [3] 康怡禎,(2008)。跳躍幅度與跳躍頻率相依下馬可夫跳躍擴散模型在財務金融之實證分析,國立東華大學應用數學系碩士論文。
    英文文獻
    [1] Bailey, W., and Stulz, R., (1989). The pricing of stock index options in a general equilibrium model. Journal of Financial and Quantitative Analysis 24, 01, 1-12.
    [2] Bakshi, G., Cao, C., and Chen, Z., (1997). Empirical performance of alternative option pricing models. The Journal of Finance 52, 5, 2003-2049.
    [3] Ball, C., and Torous, W., (1983). A simplified jump process for common stock returns. Journal of Financial and Quantitative Analysis 18, 01, 53-65.
    [4] Ballotta, L., (2005). A Lévy process-based framework for the fair valuation of participating life insurance contracts. Insurance: Mathematics and Economics 37, 2, 173-196.
    [5] Barndorff-Nielsen, O., and Shephard, N., (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 2, 1, 1.
    [6] Bates, D., (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Review of Financial Studies 9, 1, 69.
    [7] Beckers, S., (1981). A note on estimating the parameters of the diffusion-jump model of stock returns. Journal of Financial and Quantitative Analysis 16, 01, 127-140.
    [8] Black, F., and Scholes, M., (1973). The pricing of options and corporate liabilities. The Journal of Political Economy 81, 3, 637-654.
    [9] Charles, C., Fuh, C., D., and Lin, S., K., (2011). A Tale of Two Regimes: Theory and Empirical Evidence for a Markov-Switch Jump Diffusion Model and Derivative Pricing Implications. Working paper.
    [10] Cont, R., (2007). Volatility clustering in financial markets: empirical facts and agent-based models. Long Memory in Economics, 289-310.
    [11] Cont, R., and Tankov, P., (2004). Financial Modelling with Jump Processes. Chapman & Hall.
    [12] Corrado, C., and Su, T., (1997). Implied volatility skews and stock index skewness and kurtosis implied by S&P 500 index option prices. The Journal of Derivatives 4, 4, 8-19.
    [13] Cox, J., Ingersoll Jr, J., and Ross, S., (1985). A theory of the term structure of interest rates. Econometrica: Journal of the Econometric Society, 385-407.
    [14] Day, T., and Lewis, C., (1988). The behavior of the volatility implicit in the prices of stock index options* 1. Journal of Financial Economics 22, 1, 103-122.
    [15] Ding, Z., Granger, C., and Engle, R., (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 1, 83-106.
    [16] Elliott, R., Chan, L., and Siu, T., (2005). Option pricing and Esscher transform under regime switching. Annals of Finance 1, 4, 423-432.
    [17] Elliott, R., and Madan, D., (1998). A discrete time equivalent martingale measure. Mathematical Finance 8, 2, 127-152.
    [18] Eraker, B., (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option prices. The Journal of Finance 59, 3, 1367-1404.
    [19] Eraker, B., Johannes, M., and Polson, N., (2003). The impact of jumps in volatility and returns. The Journal of Finance 58, 3, 1269-1300.
    [20] Gerber, H., and Shiu, E., (1994). Option pricing by Esscher transforms. Transactions of the Society of Actuaries 46, 99, 140.
    [21] Glasserman, P., and Kou, S., (2003). The term structure of simple forward rates with jump risk. Mathematical finance 13, 3, 383-410.
    [22] Heston, S., (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6, 2, 327.
    [23] Heston, S., and Nandi, S., (2000). A closed-form GARCH option valuation model. Review of Financial Studies 13, 3, 585.
    [24] Hull, J., and White, A., (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance 42, 2, 281-300.
    [25] Jarrow, R., and Rosenfeld, E., (1984). Jump risks and the intertemporal capital asset pricing model. The Journal of Business 57, 3, 337-351.
    [26] Jiang, G., and Oomen, R., (2008). Testing for jumps when asset prices are observed with noise-a. Journal of Econometrics 144, 2, 352-370.
    [27] Kallsen, J., and Shiryaev, A., (2002). The cumulant process and Esscher`s change of measure. Finance and Stochastics 6, 4, 397-428.
    [28] Kou, S., (2002). A jump-diffusion model for option pricing. Management Science, 1086-1101.
    [29] Lange, K. A, (1995). gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 57, 2, 425-437.
    [30] Last, G., and Brandt, A., (1995). Marked Point Processes on the Real Line: The Dynamic Approach. Springer.
    [31] Lau, J., and Siu, T., (2008). On option pricing under a completely random measure via a generalized Esscher transform. Insurance: Mathematics and Economics 43, 1, 99-107.
    [32] Liew, C., and Siu, T., (2010). A hidden Markov regime-switching model for option valuation. Insurance: Mathematics and Economics.
    [33] Mandelbrot, B., (1963). The variation of certain speculative prices. The Journal of Business 36, 4, 394-419.
    [34] Merton, R., (1976). Option pricing when underlying stock returns are discontinuous* 1. Journal of Financial Economics 3, 1-2, 125-144.
    [35] Mixon, S., (2007). The implied volatility term structure of stock index options. Journal of Empirical Finance 14, 3, 333-354.
    [36] Press, S., (1967). A compound events model for security prices. Journal of Business, 317-335.
    [37] Scott, L., (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods. Mathematical Finance 7, 4, 413-426.
    [38] Stein, E., and Stein, J., (1991). Stock price distributions with stochastic volatility: an analytic approach. Review of Financial Studies 4, 4, 727.
    [39] Tauchen, G., and Zhou, H., (2006). Realized jumps on financial markets and predicting credit spreads. Journal of Econometrics.
    [40] Ward, A., et al. (1992). Numerical inversion of probability generating functions. Operations Research Letters 12, 4, 245-251.
    描述: 碩士
    國立政治大學
    統計研究所
    98354006
    99
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098354006
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    400601.pdf1501KbAdobe PDF2439檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋