Reference: | 一、英文文獻 1.Agresti, A. (2007), An Introduction to Categorical Data Analysis, 2nd ed., John Wiley and Sons, NY. 2.Aldrich, J. (1997), R.A. Fisher and the making of maximum likelihood 1912–1922. Statistical Science, 12(3), 162-176. 3.Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press. 4.Casella, G. and Berger, R. L. (2001), Statistical Inference, 2nd ed., Duxbury Press. 5.Gao, W. and Shi, N. Z. (2005), Estimating cell probabilities under order-restricted odds ratios. Computational Statistics & Data Analysis, 49(1), 77-84. 6.Harville, D. A. (1997), Matrix Algebra From A Statistician’s Perspective, Springer, NY. 7.Huber, P. J. (1964), Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73-101. 8.Iwasa, M. and Moritani, Y. (2002), Concentration probabilities for restricted and unrestricted MLEs. Journal of Multivariate Analysis, 80(1), 58-66. 9.Jensen, J. L. W. V. (1906), Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Mathematica, 30, 175-193. 10.Karmarkar, N. (1984), A New Polynomial Time Algorithm for Linear Programming. Combinatorica, 4(4), 373-395. 11.Kuhn, H. W. and Tucker, A. W. (1951), Nonlinear programming, Proceedings of 2nd Berkeley Symposium, University of California Press. 12.Lindo System Inc. , http://www.lindo.com/ . 13.Mehrotra, S. (1992), On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2(4), 575-601. 14.Nemirovski, A. (2001), Lectures on Modern Convex Optimization, Analysis, Algorithms, and Engineering Application, Society for Industrial and Applied Mathematics. 15.Rockafellar, R. T. (1970), Convex analysis, Princeton University Press. 16.Ross, S. M. (1999), An Introduction to Mathematical Finance: Options and Other Topics, Cambridge University Press. 17.Scharf, L. L. (1991), Statistical Signal Processing. Detection, Estimation, and Time Series Analysis, Addison Wesley. With C´edric Demeure. 18.Schölkopf, B. and Smola, A. (2001), Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press. 19.Tibshirani, R. (1996), Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267-288. 20.Tikhonov, A. N. and Arsenin, V. Y. (1977), Solutions of Ill-Posed Problems.V, H. Winston & Sons. Translated from Russian. 21.Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer, NY. 22.Vapnik, V. (1998), Statistical Learning Theory, John Wiley and Sons, NY. 23.Whittle, P. (1971), Optimization under constraints, John Wiley and Sons, NY.
二、中文文獻 1. 廖慶榮(2006),作業硏究,華泰文化。 |