政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60267
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113325/144300 (79%)
造访人次 : 51189133      在线人数 : 867
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/60267


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/60267


    题名: 利用資訊串流探勘社群網路中的多樣角色
    Discovering various roles from social networks by information cascade
    作者: 曾智煒
    Tzeng, Chih Wei
    贡献者: 陳良弼
    Chen, Arbee L.P.
    曾智煒
    Tzeng, Chih Wei
    关键词: 路徑探勘
    社群網路
    領袖探索
    Path Mining,
    Social Network,
    Leader Discovery
    日期: 2010
    上传时间: 2013-09-04 18:15:07 (UTC+8)
    摘要: 由於近年社群網路各種應用網站興起,像是Facebook、Twitter,等,相關議
    題也逐漸受到討論,例如越來越多利用社群網路傳播訊息或者病毒式行銷的相關
    研究。當我們能夠找出一個社群網路當中,習慣的傳播模式或者是傳播路徑,並
    且能從中定位各種角色的重要性,進一步在社群網路中找出這些角色後,在這些
    相關的議題的應用將更加靈活。
    目前各大社群網路應用網站,使用者都可以與社群網路中的好友分享自己的
    動作,例如發佈影片或圖片,評論,按「讚」等,基於這樣的前提使用者的任何
    活動是有機會被社群網路中的好友影響,因此我們定義好友間影響的可能性,以
    及依觀察合理的定義出社群網路中較為重要的角色。
    我們的演算法經由收集使用者在固定社群網路應用網站的各種動作,加上動
    作的時間所形成的動作誌(action log),以及使用者們所構成的社群網路,可以從
    社群網路中找出主要的資訊傳遞路徑以及各種不同限制下的領袖以及追隨者,並
    且將會利用社群網路應用網站驗證分析我們所定義的角色成為結論。
    Recently, social networking services and websites such as Facebook
    and Twitter are taking more and more parts in our daily life. Issues
    of influence propagation have been studied in recent years. To fill
    in the gap of previous works, we aim to discover the main path
    of influence and define the importance of leader in hierarchy on
    the social graph. Social networking users are influenced by the
    power of social networking service as they are able to post and
    likevideos, pictures and comments. Therefore, in this study we
    propose to discover the possibility of a relation and important roles by
    mining social activities. After collecting performed action and time
    stamp from different users and understanding their social network,
    our framework was able to identify the main influence paths and
    leaders under different constrains. Most importantly, our approach
    outperforms both on precision/recall and ranking in realistic data.
    參考文獻: [1] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern mining with uncertain data. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,KDD `09, pages 29{38, New York, NY, USA, 2009. ACM.
    [2] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms and applications. IEEE Trans. on Knowl. and Data Eng., 21:609{623, May 2009.
    [3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB `94, pages 487{499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.
    [4] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and Andreas Zuee. Probabilistic frequent itemset mining in uncertain databases.In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD `09, pages 119{128, New York,
    NY, USA, 2009. ACM.
    [5] Freimut Bodendorf and Carolin Kaiser. Detecting opinion leaders and trends in online social networks. In Proceeding of the 2nd ACM workshop on Social web search and mining, SWSM `09, pages 65{68, New York, NY, USA, 2009.ACM.
    [6] Wei Chen, Yajun Wang, and Siyu Yang. Efficient in
    uence maximization in social networks. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD `09, pages 199{208, New York, NY, USA, 2009. ACM.
    [7] Chun-Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets from uncertain data. In Proceedings of the 11th Pacific-Asia conference on Advances in knowledge discovery and data mining, PAKDD`07, pages 47{58, Berlin, Heidelberg, 2007. Springer-Verlag.
    [8] Ilham Esslimani, Armelle Brun, and Anne Boyer. Detecting leaders in behavioral networks. In Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM `10, pages281{285, Washington, DC, USA, 2010. IEEE Computer Society.
    [9] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD`10, pages 1019{1028, New York, NY, USA, 2010. ACM.
    [10] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Discovering leaders from community actions. In Proceeding of the 17th ACM conference on Information and knowledge management, CIKM `08, pages 499{508, New York, NY, USA, 2008. ACM.
    [11] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning influence probabilities in social networks. In Proceedings of the third ACM international conference on Web search and data mining, WSDM `10, pages 241{250, New York, NY, USA, 2010. ACM.
    [12] David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining,KDD `03, pages 137{146, New York, NY, USA, 2003. ACM.
    [13] Xiaodan Song, Yun Chi, Koji Hino, and Belle Tseng. Identifying opinion leaders in the blogosphere. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, CIKM `07, pages 971{974, New York, NY, USA, 2007. ACM.
    [14] Liwen Sun, Reynold Cheng, David W. Cheung, and Jiefeng Cheng. Mining uncertain data with probabilistic guarantees. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD `10, pages 273{282, New York, NY, USA, 2010. ACM.
    [15] Zhongwu Zhai, Hua Xu, and Peifa Jia. Identifying opinion leaders in bbs. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 03, pages 398{401,
    Washington, DC, USA, 2008. IEEE Computer Society.4
    描述: 碩士
    國立政治大學
    資訊科學學系
    98753001
    99
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098753001
    数据类型: thesis
    显示于类别:[資訊科學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    300101.pdf2477KbAdobe PDF2346检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈