English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52179622      Online Users : 339
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/60264
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60264


    Title: 探索美國財務報表的主觀性詞彙與盈餘的關聯性:意見分析之應用
    Exploring the relationships between annual earnings and subjective expressions in US financial statements: opinion analysis applications
    Authors: 陳建良
    Chen, Chien Liang
    Contributors: 劉昭麟
    張元晨

    Liu, Chao Lin
    Chang, Yuan Chen

    陳建良
    Chen, Chien Liang
    Keywords: 意見探勘
    自然語言處理
    語意分析
    財務報表文字探勘
    資訊擷取
    opinion mining
    natural language processing
    sentiment analysis
    financial text mining
    information extraction
    Date: 2010
    Issue Date: 2013-09-04 17:10:48 (UTC+8)
    Abstract: 財務報表中的主觀性詞彙往往影響市場中的參與者對於報導公司價值和獲利能力衡量的決策判斷。因此,公司的管理階層往往有高度的動機小心謹慎的選擇用詞以隱藏負面的消息而宣揚正面的消息。然而使用人工方式從文字量極大的財務報表挖掘有用的資訊往往不可行,因此本研究採用人工智慧方法驗證美國財務報表中的主觀性多字詞 (subjective MWEs) 和公司的財務狀況是否具有關聯性。多字詞模型往往比傳統的單字詞模型更能掌握句子中的語意情境,因此本研究應用條件隨機域模型 (conditional random field) 辨識多字詞形式的意見樣式。另外,本研究的實證結果發現一些跡象可以印證一般人對於財務報表的文字揭露往往與真實的財務數字存在有落差的印象;更發現在負向的盈餘變化情況下,公司管理階層通常輕描淡寫當下的短拙卻堅定地承諾璀璨的未來。
    Subjective assertions in financial statements influence the judgments of market participants when they assess the value and profitability of the reporting corporations. Hence, the managements of corporations may attempt to conceal the negative and to accentuate the positive with "prudent" wording. To excavate this accounting phenomenon hidden behind financial statements, we designed an artificial intelligence based strategy to investigate the linkage between financial status measured by annual earnings and subjective multi-word expressions (MWEs). We applied the conditional random field (CRF) models to identify opinion patterns in the form of MWEs, and our approach outperformed previous work employing unigram models. Moreover, our novel algorithms take the lead to discover the evidences that support the common belief that there are inconsistencies between the implications of the written statements and the reality indicated by the figures in the financial statements. Unexpected negative earnings are often accompanied by ambiguous and mild statements and sometimes by promises of glorious future.
    Reference: [1] W. Antweiler and M. Z. Frank, “Is all that Talk just Noise? The Information Content of Internet Stock Message Boards,” Journal of Finance, 59(3), pp. 1259-1294, 2004.
    [2] Apache Lucene 3.0.0, http://lucene.apache.org/java/docs/index.html.
    [3] Automatic Statistical SEmantic Role Tagger-v0.14b (ASSERT), http://cemantix.org/assert.html.
    [4] Charniak Parser, http://www.cs.brown.edu/~ec/#software.
    [5] Y. Choi, C. Cardie, E. Riloff and S. Patwardhan, “Identifying Sources of Opinions with Conditional Random Fields and Extraction Patterns,” Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 355-362, 2005
    [6] M. J. Collins, Head-Driven Statistical Models for Natural Language Parsing, Ph.D. thesis, University of Pennsylvania, 1999.
    [7] Electronic Data Gathering, Analysis and Retrieval system (EDGAR), http://www.sec.gov/edgar.shtml.
    [8] FrameNet, http://framenet.icsi.berkeley.edu.
    [9] D. Gildea and D. Jurafsky, “Automatic Labeling of Semantic Role,” Computational Linguistics, 28(3), pp. 245-288, 2002.
    [10] W. H. Greene, Econometric Analysis, Pearson Prentice Hall, 2008.
    [11] Illinois Chunker, http://cogcomp.cs.illinois.edu/page/software.
    [12] S.-M. Kim and E. Hovy, “Identifying Opinion Holders for Question Answering in Opinion Texts,” Proceedings of AAAI Workshop on Question Answering in Restricted Domains, pp. 20-26, 2005.
    [13] J. D. Lafferty, A. McCallum and F. C. N. Pereira, “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data,” Proceedings of the International Conference on Machine Learning, pp. 282-289, 2001.
    [14] F. Li, “Do Stock Market Investors Understand The Risk Sentiment Of Corporate Annual Reports?” University of Michigan Working Paper, 2006.
    [15] D. Lin, “Automatic Retrieval and Clustering of Similar Words.” Proceedings of the International Conference on Computational Linguistics (COLING)), pp. 768-774, 1998.
    [16] LingPipe 3.9 sentence model, http://alias-i.com/lingpipe.
    [17] B. Liu, “Sentiment Analysis and Subjectivity,” Handbook of Natural Language Processing, N. Indurkhya and F. J. Damerau (editors), CRC press , Second Edition, 2010.
    [18] T. Loughran and B. McDonald, “When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks,” Journal of Finance, 66(1), pp. 67-97, 2011.
    [19] MAchine Learning for LanguagE Toolkit-2.0.6 (MALLET), http://mallet.cs.umass.edu.
    [20] C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, Cambridge University Press, 2009.
    [21] Multi-Perspective Question Answering 2.0 (MPQA), http://www.cs.pitt.edu/mpqa.
    [22] B. Pang, L. Lee and S. Vaithyanathan, “Thumbs up? Sentiment Classification Using Machine Learning Techniques,” Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 79-86, 2002.
    [23] F. Peng, F. Feng and A. McCallum, “Chinese Segmentation and New Word Detection using Conditional Random Fields,” Proceedings of the conference on Computational Linguistics, 2004.
    [24] R.W. Picard, E. Vyzas and J. Healey, “Toward Machine Emotional Intelligence: Analysis of Affective Physiological State,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), pp. 1175-1191, 2001.
    [25] S. Pradhan, W. Ward, K. Hacioglu, J. Martin and D. Jurafsky, “Shallow Semantic Parsing Using Support Vector Machines,” Proceedings of the Human Language Technology Conference/North American Chapter of the ACL, 2004.
    [26] L. A. Ramshaw and M. P. Marcus, “Text Chunking Using Transformation-based Learning,” Proceedings of the ACL Workshop on Very Large Corpora, pp 82–94, 1995.
    [27] E. Riloff and J. Wiebe, “Learning Extraction Patterns for Subjective Expressions,” Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 25-32, 2003.
    [28] J. Ronen and V. Yaari, Earnings Management: Emerging Insights in Theory, Practice, and Research, Springer-Verlag, 2008.
    [29] Standard & Poor’s Compustat Research Insight 8.4.1, http://www.compustat.com.
    [30] Stanford Dependencies manual, http://nlp.stanford.edu/software/dependencies_manual.pdf.
    [31] Stanford NLP Toolkits, http://nlp.stanford.edu/software.
    [32] Stata dataset of Compustat Quarterly Match to SEC Filings, http://faculty.chicagobooth.edu/amir.sufi/data.htm.
    [33] Stata/MP 11.2, http://www.stata.com.
    [34] P. C. Tetlock, “Giving Content to Investor Sentiment: The Role of Media in the Stock Market,” Journal of Finance, 62(3), pp.1139-1168, 2007.
    [35] P. C. Tetlock, M. Saar-Tsechansky and S. Macskassy, “More than Words: Quantifying Language to Measure Firms` Fundamentals,” Journal of Finance, 63(3), pp. 1437-1467, 2008.
    [36] J. Wiebe, R. Bruce and T. O’Hara, “Development and Use of a Gold Standard Data Set for Subjectivity Classifications,” Proceedings of the Annual Meeting of the ACL, pp. 246-253, 1999.
    [37] T. Wilson, J. Wiebe and P. Hoffmann, “Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis,” Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347-354, 2005.
    Description: 碩士
    國立政治大學
    資訊科學學系
    98753013
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0987530132
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    013201.pdf1263KbAdobe PDF2623View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback