English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51123448      Online Users : 848
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/60258
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60258


    Title: 適用於大範圍的合作式定位方法
    A large scale cooperative localization method
    Authors: 鄧偉敦
    Teng, Wei Tun
    Contributors: 蔡子傑
    Tsai, Tzu Chieh
    鄧偉敦
    Teng, Wei Tun
    Keywords: 定位
    WiFi
    全球定位系統
    異質
    合作
    大範圍
    localization
    WiFi
    GPS
    heterogeneous
    cooperative
    large scale
    Date: 2010
    Issue Date: 2013-09-04 17:09:40 (UTC+8)
    Abstract: 近來幾年智慧型手機和適地性服務已經變得非常熱門。 智慧型手機必須有辦法知道使用者的位置,因此精準的定位技術就變得重要。 至今人們只能夠在特定的環境利用某些定位方法,就像是GPS只能用於室外的空間。 但是人們總是生活於大範圍的環境像是校園、都市和觀光區,這種大範圍的環境包含了室內和室外的空間。
    大範圍的環境下,單一定位技術未必到處都可用,因此我們結合了GPS、WiFi和物聯網定位提出了一個異質式定位演算法。 我們提出“定位可能性”來選擇比較“可靠”(可能)的定位方法。 除此之外,利用較可靠的鄰近使用者與自己之間的WiFi訊號強度可更進一步改善定位的精準度。特別針對某些使用者在沒有任何可用的定位方法時更有幫助。這個方法被稱為“合作式定位”。
    最後,我們用模擬來評估我們演算法的精準度。 因為訊號強度每分每秒都在波動,因此我們測量實際的訊號強度和GPS放入模擬器,讓實驗結果變得更真實。 最後我們也證明我們的演算法可以做在手機上而且更精準。
    Smart phones and Location Based Services (LBSs) have become very popular in recent years. To this end, the smart phone needs to know the locations of users. Therefore, an accurate localization technique is important. To date people can use some localization systems in some specific areas. For instance, GPS can only be used in the outdoor space. However, people always live in large scale environments like campus, urban and tourist areas. The large scale environments should include indoor and outdoor space.
    For large scale environment, a single location technique is not always available everywhere. Therefore, we proposed a heterogeneous localization algorithm which combines GPS, WiFi and Internet Of Things (IOT) localizations. We proposed “localization possibility” for each localization methods. This algorithm use localization possibility to select the most “reliable” (possible) one. Besides, the more reliable nearby users can further enhance the localization by measuring the relative WiFi signal strength. It helps especially for those users who have no any available localization methods. This method is called “cooperative localization”.
    Finally, we evaluated the accuracy of our algorithms by simulation. Because signal strength fluctuates from minute to minute, we measured empirical data and put into the simulator to make our experimental results more real. Finally, we also verify that our idea can be implemented on smart phones and our algorithm is more accurate.
    Reference: [1] J. Hightower, R. Want, and G. Borriello, “SpotON: An indoor 3D location sensing technology based on RF signal strength,” Univ. Washington, Seattle, Tech. Rep. UW CSE 2000–02-02, Feb. 2000.
    [2] L. M. Ni,Y. Liu,Y. C. Lau, and A. P. Patil, “LANDMARC: Indoor location sensing using active RFID,” Wireless Netw., vol. 10, no. 6, pp. 701–710, Nov. 2004.
    [3] Bahl, P., Padmanabhan, V.N.: “Radar an in-building RF-based user location and tracking system.” In: INFOCOM 2000, Tel Aviv, Israel, pp. 775–784 (2000)
    [4] M. Youssef and A. K. Agrawala, “Handling samples correlation in the Horus system,” IEEE INFOCOM 2004, Hong Kong, vol. 2, pp. 1023–1031, Mar. 2004.
    [5] Ekahau, Inc. Ekahau Positioning Engine 2.0. http://www.ekahau.com/
    [6] Haeberlen, A.; Flannery, E.; Ladd, A.; Rudys, A.; Wallach, D.;and Kavraki, L. “Practical robust localization over largescale 802.11 wireless networks.” In Proc. of the Tenth ACM International Conference on Mobile Computing and Networking 2004.
    [7] H. Lemelson, S. Schnaufer and W. Effelsberg, “Automatic Identification of Fingerprint Regions for Quick and Reliable Location Estimation.” Pervasive Computing and Communications Workshops (PERCOM Workshops) 2010.
    [8] Dik Lun Lee and Qiuxia Chen, “A Model-Based WiFi Localization Method”, The Hong Kong University of Science and Technology, INFOSCALE 2007 June 6-8, 2007, Suzhou, China, ACM 2007.
    [9] R. Hansen and B Thomsen, “Efficient and Accurate WLAN Positioning with Weighted Graphs”, MOBILIGHT 2009, LNICST 13, pp. 372–386, 2009.
    [10] O. Baala, Y. Zheng, A. Caminada. "The Impact of AP Placement in WLAN-Based Indoor Positioning System," Proceedings of the 8th International Conference on Networks, Cancun, Mexico, pp.12-17, 2009.
    [11] P. Bolliger, K. Partridge, M. Chu, and M. Langheinrich. “Improving Location Fingerprinting through Motion Detection and Asynchronous Interval Labeling.” In Proc. Location and Context Awareness, pp. 37–51, Tokyo, Japan, May 2009.
    [12] Bolliger, P.: Redpin – “adaptive, zero-configuration indoor localization through user collaboration.” In: Workshop on Mobile Entity Localization and Tracking in GPS less Environment Computing and Communication Systems (MELT), San Francisco(2008)
    [13] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche. “A comparative survey of wlan location fingerprinting methods.” In Proc. 6th Workshop on Positioning, Navigation and Communication WPNC 2009, pp. 243–251, 2009.
    [14] Hendrik Lemelson, Stephan Kopf, Thomas King, Wolfgang Effelsberg, "Improvements for 802.11-Based Location Fingerprinting Systems," compsac, vol. 1, pp.21-28, 2009 33rd Annual IEEE International Computer Software and Applications Conference, 2009
    [15] Liu, H., H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on systems, Man, and Cybernetics — Part C: Applications and Reviews, Vol. 37, No. 6, November 2007.
    [16] Chan L-W, Chiang J-R, Chen Y-C, Ke C-N, Hsu J, Chu H-H (2006) “Collaborative localization—enhancing WiFi-based position estimation with neighborhood links in clusters.”, in Proceedings of the International conference on Pervasive Computing (PERVASIVE 2006), pp. 50–66
    [17] N. Banerjee, S. Agarwal, P. Bahl, R. Chandra, A. Wolman, and M. Corner. “Virtual compass: relative positioning to sense mobile social interactions.” In Pervasive, 2010.
    [18] ORBI positioning system. http://ssrc.nccu.edu.tw/orbi/
    [19] News clip for ORBI. http://mag.udn.com/mag/digital/storypage.jsp?f_MAIN_ID=320&f_SUB_ID=4996&f_ART_ID=321825
    [20] H. Lemelson, M. B. Kjærgaard, R. Hansen, and T. King. “Error Estimation for Indoor 802.11 Location Fingerprinting.” In Proc. Location and Context Awareness, pp. 138–155, Tokyo, Japan, May 2009.
    Description: 碩士
    國立政治大學
    資訊科學學系
    98753038
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098753038
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    303801.pdf4567KbAdobe PDF2297View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback