Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/60226
|
Title: | 考量消費者行為與供應商價格競爭之零售商價格競爭模式之研究 A Study on Pricing Competition Model of Retailer with Learning Behavior of Consumer and Competition of Supplier |
Authors: | 鄧廣豐 Deng, Guang Feng |
Contributors: | 林我聰 鄧廣豐 Deng, Guang Feng |
Keywords: | 價格競爭模式 複雜適應性系統 消費者購買決策與學習行為 價格調整策略 代理人基塑模與模擬 演化賽局 Pricing competitive model Complex Adaptive System Consumer behavior Adaptive pricing strategy Agent-based modeling and simulation |
Date: | 2010 |
Issue Date: | 2013-09-04 17:01:08 (UTC+8) |
Abstract: | 在複雜動態競爭市場中,生產者的價格競爭行為一直是一個研究的重點,相較於生產者動態價格競爭,零售商的價格競爭行為鮮少被探討,因此本研究針對零售商價格競爭行為進行研究。針對零售商之間的價格競爭行為,除了考量零售商與對手零售商的價格互動,不可忽略的是上游供應商的競爭互動與下游消費者的學習行為在市場中與零售商端互動下錯綜複雜的動態影響,緣此,本研究以零售商端的角度,想了解供應商競爭與消費者學習行為對零售商競爭的影響,再以單一零售商角度,分析各情況下所應對的價格調整策略。 本研究將零售商、供應商及消費者互動形成之競爭市場視為一個複雜適應性系統(Complex Adaptive System ,簡稱CAS),應用代理人基塑模與模擬(Agent-based Modeling and Simulation,簡稱ABMS)方式建構考量供應商競爭與消費者學習行為之零售商價格競爭模式,將演化賽局理論應用於價格競爭中,探討不同的消費者學習及供應商價格競爭行為如何動態影響零售商價格競爭型態,以及不同價格調整策略之績效表現。 研究結果發現一,市場中消費者呈現不同的學習行為,對零售商競爭將造成不同的衝擊。「貨比三家無學習」型消費者將造成零售商端低價競爭,使其平均價格最低及獲利最低。「自我式學習」型消費者將造成零售商高價合作,使其平均價格最高及獲利最高。「群體式學習」型消費者同樣使零售商端偏向高價合作,且其平均價格及獲利相當接近自我式學習市場,雖然兩種學習行為具有近似的平均價格與獲利,「群體式學習」卻會導致零售商價格競爭之型態轉為劇烈,包括獲利領先轉換方式由漸進轉為瀑布,領先方式從勢均力敵轉為大幅領先,領先互換的頻率由低轉為高。另外,消費者購買決策之理性程度對零售商端競爭形態有影響,不論在何種供應商行為下,高理性購買決策在群體式學習下將導致零售商端價格競爭較激烈,在自我式學習下卻導致零售商端競爭行為較緩和。 研究發現二,市場中供應商的價格競爭行為會對零售商端的價格、獲利與競爭型態造成衝擊。供應商呈現價格競爭行為下,在「貨比三家無學習」之消費者行為市場中,將減緩零售商價格競爭,使零售商端之平均價格及獲利提高。在「自我」與「群體式」學習消費者市場中,將增強零售商價格競爭強度,使零售商端之平均價格及獲利降低。 研究發現三,不同的競爭市場中,零售商之最佳價格調整策略也將不同。基本上在供應商無競爭行為下,無論消費者呈現何種行為,零售商採取開放式價格調整策略具有明顯優勢。在供應商呈現競爭行為下,開放式價格調整策略在「無學習」及「群體式學習高理性程度」行為市場仍為優勝策略,在「自我式學習」及「群體式學習低理性程度」下,保守型價格調整策略則表現較佳。 在實務意涵上,若零售商可使消費者行為偏向自我或群體式學習,並穩定供應商價格競爭下,整體而言零售商端競爭可獲得最高的獲利,若當此刻競爭零售商採取保守型價格策略,而本身採取開放式價格調整策略,則獲利最大。然而面臨群體式學習消費者,由於競爭強度的增加,需留意市場動態,須隨時靈活調整本身價格策略,避免因價格策略的僵化,而成為虧損之零售商。 The pricing competitive model traditionally assumes that consumers will buy from the firm selling the homogeneous product at the lowest price, thus discarding any possibility of learning behavior on the demand side. But if, as in real competition, consumers learn adaptively and competition is a dynamic process, then some attention should be paid to consumers` behavior. In a multiple supplier – multiple retailer supply chain, multiple price competitive forces interact to influence firm price decisions. These forces include: (1) the supplier level competition each supplier faces from others producing the same product, (2) the retailer level competition among the retailers selling the same set of goods, and (3) the vertical interaction competition between the retailer and supplier. We are interest in these questions: How does the consumer learning behavior affect the retailer pricing competitive model? How does the competition of supplier affect the retailer pricing competitive model? What is the optimal adaptive pricing strategy for retailer performance in such competitive market including retailers, suppliers and consumers. Therefore, this research study a version of the pricing competitive (Bertrand) model in which consumer exhibit dynamic adaptive learning behavior when deciding from what retailers they will buy. And we consider to join the supplier competitive pricing behavior into the retailer pricing competitive model and formulate their interaction as evolutional game and to analyze the competition of supplier effect and its impact on the pricing competition of retailers. This research uses a complex adaptive system perspective to construct a retailer pricing competitive model which considers both competitive supplier and learning consumer behavior. Using agent-based modeling and simulation (ABMS) to construct the competitive market include retailers, suppliers and consumers, and use the fuzzy logic, genetic algorithms to model the pricing decision and learning behavior of retailers and suppliers, and use reinforcement learning and swarm algorithms to model consumers’ learning behavior. The simulation results demonstrate that: The retailer level obtains the highest profit when the consumer behavior following reinforcement learning. When the consumer behavior displays swarm learning, the retailer level also obtains high profit near the highest profit. However swarm learning increases the competitive intensity on the retailer level. The competitive supplier increases the competitive intensity and decrease profit on the retailer level when the consumer behavior displays reinforcement learning and swarm learning. The performance of retailer following a closed adaptive pricing strategy (high exploitation low exploration) exceeds that of retailer following an open adaptive pricing strategy (low exploitation high exploration) when the consumer behavior displays reinforcement learning and supplier display competitive behavior. However when the consumer behavior displays swarm learning and supplier display competitive behavior, the performance of retailer following an open adaptive pricing strategy exceeds that of retailer following a closed adaptive pricing strategy. The proposed pricing competitive model with adaptive learning of consumer behavior and competition of supplier can help retailers to analyze pricing strategy and further discovery and design the more optimal pricing strategy. |
Reference: | 1. Amaral, L. A. N., & Uzzi, B. (2007). Complex systems--A new paradigm for the integrative study of management, physical, and technological systems. Management Science, 53(7), 1033-1035. 2. Anand, K. S., & Goyal, M. (2009). Strategic information management under leakage in a supply chain. Management Science, 55(3), 438-452. 3. Anderson, E., & Kumar, N. (2007). Price competition with repeat, loyal buyers. Quantitative Marketing and Economics, 5(4), 333-359. 4. Anderson, P. (1999). Complexity theory and organization science. Organization Science, 10(3), 216-232. 5. Benchekroun, H., Martin-Herran, G., & Taboubi, S. (2009). Could myopic pricing be a strategic choice in marketing channels? A game theoretic analysis. Journal of Economic Dynamics & Control, 33(9), 1699-1718. 6. Bernstein, F., & Federgruen, A. (2003). Pricing and replenishment strategies in a distribution system with competing retailers. Operations Research, 51(3), 409-426. 7. Chaharsooghi, S. K., Heydari, J., & Zegordi, S. H. (2008). A reinforcement learning model for supply chain ordering management: An application to the beer game. Decision Support Systems, 45(4), 949-959. 8. Chen, S. H., & Chie, B. T. (2008). Lottery markets design, micro-structure, and macro-behavior: An ACE approach. Journal of Economic Behavior & Organization, 67(2), 463-480. 9. Chintagunta, P. K., & Rao, V. R. (1996). Pricing strategies in a dynamic duopoly: A differential game model. Management Science, 42(11), 1501-1514. 10. Choi, S. C. (1991). Price-competition in a channel structure with a common retailer. Marketing Science, 10(4), 271-296. 11. Choi, S. C. (1996). Price competition in a duopoly common retailer channel. Journal of Retailing, 72(2), 117-134. 12. Choi, T., Dooley, K., & Rungtusanatham, M. (2001). Supply networks and complex adaptive systems: Control versus emergence. Journal of Operations Management, 19(3), 351-366. 13. Cowan, R., Jonard, N., & Zimmermann, J.-B. (2007). Bilateral collaboration and the emergence of innovation networks. Management Science, 53(7), 1051-1067. 14. Delre, S. A., Jager, W., Bijmolt, T. H. A., & Janssen, M. A. (2007). Targeting and timing promotional activities: An agent-based model for the takeoff of new products. Journal of Business Research, 60(8), 826-835. 15. Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence: Wiley New York. 16. Erev, I., & Roth, A. E. (1998). Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review, 88(4), 848-881. 17. Furtado, V., Melo, A., Coelho, A. L. V., Menezes, R., & Perrone, R. (2009). A bio-inspired crime simulation model. Decision Support Systems, 48(1), 282-292. 18. Gilbert, G., & Troitzsch, K. (2005). Simulation for the social scientist: Open Univ Pr. 19. Greetham, D. V., & Sengupta, A. (2007). Evolutionary brand competition with consumers interactions Paper presented at the The second workshop on Market Dynamics 20. Hanaki, N., Peterhansl, A., Dodds, P. S., & Watts, D. J. (2007). Cooperation in evolving social networks. Management Science, 53(7), 1036-1050. 21. Harrington, J. E., & Chang, M. H. (2005). Co-evolution of firms and consumers and the implications for market dominance. Journal of Economic Dynamics & Control, 29(1-2), 245-276. 22. Heath, B., Hill, R., & Ciarallo, F. (2009). A survey of agent-based modeling practices (january 1998 to july 2008). Journal of Artificial Societies and Social Simulation, 12(4), 143-177. 23. Hehenkamp, B. (2002). Sluggish consumers: an evolutionary solution to the Bertrand paradox. Games and Economic Behavior, 40(1), 44-76. 24. Hopkins, E. (2007). Adaptive learning models of consumer behavior. Journal of Economic Behavior & Organization, 64(3-4), 348-368. 25. Hwarng, H. B., & Xie, N. (2008). Understanding supply chain dynamics: A chaos perspective. European Journal of Operational Research, 184(3), 1163-1178. 26. Ingene, C. A., & Parry, M. E. (1995). Channel coordination when retailers compete. Marketing Science, 14(4), 360-377. 27. Izquierdo, S. S., & Izquierdo, L. R. (2007). The impact of quality uncertainty without asymmetric information on market efficiency. Journal of Business Research, 60(8), 858-867. 28. Janssen, M., & Jager, W. (1999). An integrated approach to simulating behavioural processes: A case study of the lock-in of consumption patterns. Journal of Artificial Societies and Social Simulation, 2(2), 21-35. 29. Janssen, M. A., & Jager, W. (2003). Simulating market dynamics: Interactions between consumer psychology and social networks. Artificial Life, 9(4), 343-356. 30. Jiang, L., & Wang, Y. Z. (2010). Supplier competition in decentralized assembly systems with price-sensitive and uncertain demand. M&Som-Manufacturing & Service Operations Management, 12(1), 93-101. 31. Kennedy, J. (1999). Minds and cultures: Particle swarm implications for beings in sociocognitive space. Adaptive Behavior, 7(3-4), 269-287. 32. Kennedy, J., Eberhart, R., & Shi, Y. (2001). Swarm intelligence: Springer. 33. Khouja, M., Hadzikadic, M., & Zaffar, M. A. (2008). An agent based modeling approach for determining optimal price-rebate schemes. Simulation Modelling Practice and Theory, 16(1), 111-126. 34. Kim, W. S. (2009). Effects of a trust mechanism on complex adaptive supply networks: An agent-based social simulation study. Journal of Artificial Societies and Social Simulation, 12(3). 35. Kimbrough, S. O., Wu, D. J., & Zhong, F. (2002). Computers play the beer game: Can artificial agents manage supply chains? Decision Support Systems, 33(3), 323-333. 36. Kirman, A. (1993). Ants, rationality, and recruitment. Quarterly Journal of Economics, 108(1), 137-156. 37. Kirman, A., & Tuinstra, J. (2005). Bounded rationality, heterogeneity and market dynamics - Introduction. Journal of Economic Dynamics & Control, 29(4), 595-600. 38. Kirman, A. P., & Vriend, N. J. (2001). Evolving market structure: An ACE model of price dispersion and loyalty. Journal of Economic Dynamics & Control, 25(3-4), 459-502. 39. Leng, M. M. (2005). Game theoretic applications in supply chain management: A review. Infor, 43(3), 187-220. 40. Levin, Y., McGill, J., & Nediak, M. (2009). Dynamic pricing in the presence of strategic consumers and oligopolistic competition. Management Science, 55(1), 32-46. 41. Li, G., Ji, P., Sun, L. Y., & Lee, W. B. (2009). Modeling and simulation of supply network evolution based on complex adaptive system and fitness landscape. Computers & Industrial Engineering, 56(3), 839-853. 42. Li, G., Yang, H., Sun, L., Ji, P., & Feng, L. (2010). The evolutionary complexity of complex adaptive supply networks: A simulation and case study. International Journal of Production Economics, 124(2), 310-330. 43. Li, L. D., & Zhang, H. T. (2008). Confidentiality and information sharing in supply chain coordination. Management Science, 54(8), 1467-1481. 44. Marsh, L., & Onof, C. (2008). Stigmergic epistemology, stigmergic cognition. Cognitive Systems Research, 9(1-2), 136-149. 45. McCarter, M. W., & Northcraft, G. B. (2007). Happy together? Insights and implications of viewing managed supply chains as a social dilemma. Journal of Operations Management, 25(2), 498-511. 46. Midgley, D., Marks, R., & Kunchamwar, D. (2007). Building and assurance of agent-based models: An example and challenge to the field. Journal of Business Research, 60(8), 884-893. 47. Miller, J., & Page, S. (2007). Complex adaptive systems: Princeton Univ. Press. 48. Mishra, B. K., Raghunathan, S., & Yue, X. H. (2009). Demand forecast sharing in supply chains. Production and Operations Management, 18(2), 152-166. 49. Nagarajan, M., & Sosic, G. (2009). Coalition stability in assembly models. Operations Research, 57(1), 131-145. 50. Nair, A., Narasimhan, R., & Choi, T. Y. (2009). Supply networks as a complex adaptive system: Toward simulation-based theory building on evolutionary decision making. Decision Sciences, 40(4), 783-815. 51. North, M., & Macal, C. (2007). Managing business complexity: Discovering strategic solutions with agent-based modeling and simulation: Oxford University Press, USA. 52. Pan, K. W., Lai, K. K., Leung, S. C. H., & Xiao, D. (2010). Revenue-sharing versus wholesale price mechanisms under different channel power structures. European Journal of Operational Research, 203(2), 532-538. 53. Pathak, S., Dilts, D., & Mahadevan, S. (2009). Investigating population and topological evolution in a complex adaptive supply network. Journal of Supply Chain Management, 45, 54. 54. Pathak, S. D., Day, J. M., Nair, A., Sawaya, W. J., & Kristal, M. M. (2007). Complexity and adaptivity in supply networks: Building supply network theory using a complex adaptive systems perspective. Decision Sciences, 38(4), 547-580. 55. Pathak, S. D., Dills, D. M., & Biswas, G. (2007). On the evolutionary dynamics of supply network topologies. Ieee Transactions on Engineering Management, 54(4), 662-672. 56. Rivkin, J. W. (2000). Imitation of complex strategies. Management Science, 46(6), 824-844. 57. Rivkin, J. W., & Siggelkow, N. (2007). Patterned interactions in complex systems: Implications for exploration. Management Science, 53(7), 1068-1085. 58. Roach, A., & Gilbert, N. (2007). ConSims: Simulating consumer behaviour. Paper presented at the The second workshop on Market Dynamics 59. Sarin, R., & Vahid, F. (2001). Predicting how people play games: A simple dynamic model of choice. Games and Economic Behavior, 34(1), 104-122. 60. Schenk, T. A., Loffler, G., & Rauh, J. (2007). Agent-based simulation of consumer behavior in grocery shopping on a regional level. Journal of Business Research, 60(8), 894-903. 61. Schilling, M. A., & Phelps, C. C. (2007). Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Management Science, 53(7), 1113-1126. 62. Siebers, P., Aickelin, U., Celia, H., & Clegg, C. (2009). Simulating customer experience and word-of-mouth in retail-a case study. Simulation, 86(1), 5-30. 63. Surana, A., Kumara, S., Greaves, M., & Raghavan, U. (2005). Supply-chain networks: A complex adaptive systems perspective. International Journal of Production Research, 43(20), 4235-4265. 64. Tatsuo, Y., & Tamotsu, O. (2010). Dynamics of market structure driven by the degree of consumer`s rationality. Physica A: Statistical Mechanics and its Applications, 389(5), 1041-1054. 65. Tay, N. S. P., & Lusch, R. F. (2005). A preliminary test of Hunt`s general theory of competition: Using artificial adaptive agents to study complex and ill-defined environments. Journal of Business Research, 58(9), 1155-1168. 66. Tay, N. S. P., & Lusch, R. F. (2007). Agent-based Modeling of ambidextrous organizations: Virtualizing competitive strategy. IEEE Intelligent Systems, 22(5), 50-57. 67. Tykhonov, D., Jonker, C., Meijer, S., & Verwaart, T. (2008). Agent-based simulation of the trust and tracing game for supply chains and networks. Journal of Artificial Societies and Social Simulation, 11(3). 68. Varga, L., Allen, P., Strathern, M., Rose-Anderssen, C., Baldwin, J., & Ridgway, K. (2009). Sustainable supply networks: A complex systems perspective. Emergence: Complexity & Organization 11(3), 16-36. 69. Vila, X. (2008). A model-to-model analysis of Bertrand competition. Journal of Artificial Societies and Social Simulation, 11(2). 70. Yue, X. H., Mukhopadhyay, S. K., & Zhu, X. W. (2006). A Bertrand model of pricing of complementary goods under information asymmetry. Journal of Business Research, 59(10-11), 1182-1192. 71. Zhang, H. T. (2002). Vertical information exchange in a supply chain with duopoly retailers. Production and Operations Management, 11(4), 531-546. 72. Zhang, T., & Brorsen, B. (2009). Particle swarm optimization algorithm for agent-based artificial markets. Computational Economics, 34(4), 399-417. 73. Zhang, T., & Zhang, D. (2007). Agent-based simulation of consumer purchase decision-making and the decoy effect. Journal of Business Research, 60(8), 912-922. |
Description: | 博士 國立政治大學 資訊管理研究所 95356502 99 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0953565021 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
502101.pdf | | 9246Kb | Adobe PDF2 | 341 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|