Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/60093
|
Title: | 基於 EEMD 之類神經網路預測方法進行台指選擇權交易策略 TAIEX option trading by using EEMD-based neural network learning paradigm |
Authors: | 李恩慈 Li, En Tzu |
Contributors: | 蕭又新 廖四郎 Shiau, Yuo Hsien Liao, Szu Lang 李恩慈 Li, En Tzu |
Keywords: | EEMD ANN 交易策略 FK 指標 EEMD ANN Forecasting FK Indicator |
Date: | 2010 |
Issue Date: | 2013-09-04 15:27:39 (UTC+8) |
Abstract: | 金融市場瞬息萬變,幾乎所有商品價格都是非線性的動態過程,如何預測價格一直都是倍受討論和研究的議題。隨著電腦科技的不斷進步,許多財務學者以市場上的歷史交易資料作為研究對象,希望能夠預測出有效的結果。本研究利用 EEMD 法拆解原始加權指數訊號,建立類神經網路模型,並預測出未來市場之價格後,利用 FK 值當作交易門檻,帶回台指選擇權做交易測試並計算報酬。由於不同神經元個數會配適出不同的預測結果,本研究希望能夠找到較適合使用在指數預測的網路架構。 The financial market forecasting is characterized by data intensity, noise, non-stationary, high degree of uncertainty, and hidden relationships. Investors are concerned about the forecasting market price. Throughout the development of computational technology, researchers have been involved in data mining on historical trading enabling them to have a more accurate data. This research uses Ensemble Empirical Mode Decomposition-based Artificial Neural Networks (ANNs) learning paradigm to provide different ways to analyze the stock market. In our research, we used the ANN method to obtain our prediction of the stock price. First, the previous day’s stock price needs to be decomposed in order to see the various variables, that is, the numerous IMFs seen on the graphs. Acquiring the information, it is inserted into the ANN method to get a prediction. Following that, the prediction can then be transformed into a simpler result via the Forward Calculator % K indicator. As a result, the FK value can display a signal if to buy or sell, and confirm trading time, and make buy or sell Call-Put decisions on TAIEX options. In summary,we found different neuron numbers in the hidden layers that may affect the result of prediction. |
Reference: | Abu-mostafa Y. S. and Atiya A. F., Introduction to Financial Forecasting, Applied Intelligence, 1996, 6: 205-213.
Black F. and Scholes M.,The Pricing of Options and Corporate Liabilities, The Journal of Political Economy,1973, vol. 81,No. 3:637-654.
Chan M. C., Wong C. C., Lam C. C., Financial time series forecasting by neural network using conjugate gradient learning algorithm and multiple linear regression Weight Initialization, 2000, Citeseer.
Djennas Me., Benbouziane M. and Djennas Mu., An Approach of Combining Empirical Mode Decomposition and NeuralNetwork Learning for Currency Crisis
Forecasting, Politics and Economic Development, ERF 17th annual conference, 2011,Turkey.
Huang N.E., Shen Z., and Long S. R., The empirical mode decomposition and the hilbert spectrum for onlinear and non-stationary time series analysis, Process of the Royal Society of London, 1998, A454: 903–995.
Huang N. E., Wu M. L. Qu W. D., Long S. R., Shen S. P.and Zhang J. E., Applications of Hilbert–Huang transform to non-stationary financial time series analysis, Appl. Stochastic Models Bus. Ind., 2003: 245:268
Hamid S. A. and Iqbal Z., Using neural networks for forecasting volatility of S&P 500 Index futures prices, Journal of Business Research, 2004, 57: 1116-1125
Kaastra I., Boyd M., Designing a neural network for forecasting financial and economic time series, Neurocomputing, 1996, 10: 215-236
Klevecka, I., Lelis J., Pre-Processing of Input Data of Neural Networks: The Case of Forecasting Telecommunication Network Traffic, Telenor ASA, 2008
Lin, T. W. and Yu, C. C., Forecasting stock market with neural networks, SSRN Working Paper, 2009
Mendelsohn L., Preprocessing data for Neural Networks, Tech Anal Stocks Commod, 1993:52-58
Wu, Z. and Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method, Centre for Ocean Land Atmosphere Studies. Technical Report, 2004, 193: 51
Yu. L., Wang, S. Y. and Lai, K. K., Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm, Energy Economics,2008, 30: 2623-2635
Yu L., Wang S. Y., Lai K. K., Wen F. H., A multiscale neural network learning paradigm for financial crisis forecasting, Neuro computing, 2010, 73:716-725
Zhang, X., Lai, K.K., and Wang, S. Y., A new approach for crude oil price analysis based on Empirical Mode Decomposition, Energy Economics, 2008, 30: 905-918 |
Description: | 碩士 國立政治大學 應用物理研究所 98755003 99 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0098755003 |
Data Type: | thesis |
Appears in Collections: | [應用物理研究所 ] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
500301.pdf | | 1063Kb | Adobe PDF2 | 898 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|