English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50969666      Online Users : 981
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/59957
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59957


    Title: 考量違約頻率具自我傳染效應之動態違約相關性描述
    Authors: 王盈心
    Wang, Ying Hsin
    Contributors: 江彌修
    Chiang, Mi Hsiu
    王盈心
    Wang, Ying Hsin
    Keywords: 信用債權群組
    條件獨立
    動態違約傳染效果
    Date: 2009
    Issue Date: 2013-09-04 10:04:58 (UTC+8)
    Abstract: 本文建立動態違約模型,以混合卜瓦松跳躍過程(Mixed Poisson Jump Process)描述單一標的資產動態存活機率,以跳躍來描述信用事件之發生對存活機率下降之影響及衝擊,信用事件分別由系統性因子及非系統性因子驅動,沿用因子聯繫模型條件獨立的概念,假設債權群組內所有標的資產之存活機率在給定系統信用事件發生次數下為條件獨立,以條件違約機率建構債權群組織之聯合損失分配,進一步以隨機變數刻劃信用事件發生頻率,假設非系統信用事件發生頻率為兩參數伽瑪分配;系統信用事件發生頻率分別同為兩參數伽瑪分配,及帕雷圖分配(Pareto Distribution),反映信用事件發生次數於特定期間內具叢聚性質之不確定性,改變常數設定下信用事件相互獨立之性質,使具備自身傳染性。在不涉及複雜積分及模擬之情況下沿用因子聯繫模型中條件獨立之概念建立聯合損失分配,可廣泛應用於信用資產群組之評價與風險分析,本文以iTraxx Europe 為例進行評價及風險分析。模型中所有參數均可以信用擔保債權之市價予以校準, 並且理論價格與市價十分相近,可合理地評價信用資產群組之價值。
    Reference: 1. Allen, L. and Bali, T. G. (2007), ”Cyclicality in catastrophic and operational risk measurements”, Journal of Banking & Finance 31, 1191–1235.
    2. Andersen, L., J. Sidenius, and S., Basu, (2003), ”All Your Hedges in One Basket,” Risk, 16, 67-72.
    3. Black, F. and J. C. Cox, (1976), ”Valuing Corporate Securities:Some Effects of Bond Indenture Provisions,” Journal of Finance 31, 351-367.
    4. CreditRisk+ (1997), Credit Suisse First Boston, ”A CreditRisk Management Framework.” Available at http://www.csfb.com/creditrisk.
    5. Das, S.R., D. Duffie, N. Kapadia and L. Saita, (2007),” Common Failings: How Corporate Defaults Are Correlated, ” Journal of Finance 62, 93-117.
    6. Davis, M., and Lo, V. (2001), ”Infectious Defaults”, Quantitative Finance 1, 382-387.
    7. Duffie, D. and K. Singleton, (1999), ”Modeling Term Structures of Defaultable Bonds,” Review of Financial Studies 12, 687-720.
    8. Duffie, D. and N. Garleanu (2001), ”Risk and Valuation of Collateralized Debt Obligations,” Financial Analyst’s Journal 57(1),41-59
    9. Duffie, D., A. Eckner, G. Horel and L. Saita,(2009), ”Frailty Correlated Default, ” Journal of Finance 64, 2089-2123.
    10. Global Fixed Income Reasearch by Standard & Poor’s 2005, ”Annual European Corporate Default Study And Rating Transitions,”
    11. Jan Grandell,” Mixed Poission processes,” Monographs on Statistics and Applied Probability 77, Chapman & Hall
    12. Jarrow, R. and S. Turnbull, (1995), ”Pricing Derivatives on Financial Securities Subject to CreditRisk,”Journal of Finance 50, 53- 85.
    13. Jarrow, R., D. Lando, and S. Turnbull, (1997), ”A Markov Model for the Term Structure of Credit Spread,” Review of Financial Studies 10, 481- 523.
    14. k. Krishnamoorthy,” Handbook of Statistical Distibutions with Applications,” Chapman & Hall/CRC.
    15. K.O.Bowman, L.R.Shenton,” Poperties of Estimators for the Gamma Distribution,” Dekker vol 89.
    16. Hull, J., and A. White (2004),”Valuation of a CDO and nth to Default CDS without Monte Carlo Simulation,” Journal of Derivatives, 12 8-23.
    17. Hull, J., and A. White (2006),”Valuing Credit Derivatives Using an Implied Copula Approach,” Journal of Derivatives, 14 8-28.
    18. Hull, J., and A. White (2008), ”Dynamic Models of Portfolio Credit Risk: a Simplified Approach,” Journal of Derivatives
    19. Kay Giesecke.(2003),”A Simple Exponential Model for Dependent Defaults,” Journal of Fixed Income 13(3), 74-83.
    20. Kay Giesecke, Stefan Weber (2003),”Cyclical Correlations, Credit Contagion, and Portfolio Losses,” Journal of Banking & Finance
    21. Laurent, J.P. and J. Gregory, (2003), ”Basket Default Swaps, CDO’s and Factor Copulas,” working paper, ISFA Actuarial School,University of Lyon
    22. Li, D.X. (2000), ”On Default Correlation: A Copula Approach,” Journal of Fixed Income, 9 43-54.
    23. M. Abramowitz, I.E. Stegun,” Handbook of Mathematical Functions with Formulaa,Graphs and Mathematical Tables,”U.S. Department of Commerce, National Bureau of standards Applied Mathematics Series 55
    24. Schmutz, Markus (1998), ”The Pareto Model in Property Reinsurance – Formulas and Applications , ” Swiss Reinsurance Company, Zurich.
    Description: 碩士
    國立政治大學
    金融研究所
    96352010
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096352010
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    201001.pdf973KbAdobe PDF2466View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback