English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 115256/146303 (79%)
Visitors : 54537961      Online Users : 364
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/59435
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59435


    Title: 以三個二維連續分配對最大概似估計與最大擬概似估計作比較
    A comparison between maximun likelihood estimation and maximun pseudo-likelihood estimation using three bivariate continuous distributions
    Authors: 張嘉福
    Contributors: 宋傳欽
    姜志銘

    張嘉福
    Keywords: 相容
    條件分配
    最大概似估計
    最大擬概似估計
    compatibility
    conditional distribution
    maximum likelihood estimator
    maximum pseudo-likelihood estimator
    Date: 2012
    Issue Date: 2013-09-02 16:46:31 (UTC+8)
    Abstract: 給定一些條件分配,若其相容,我們可以試著找出對應的聯合分配,並由概似函數求其參數的最大概似估計。但當聯合密度函數不易求出或過於複雜時,我們可以利用擬概似函數去估計參數。本文透過三個分配:(1)聯合分配為Gumbel二維指數分配;(2)聯合分配為二維常態分配;(3)聯合分配為Marshall及Olkin 二維指數分配,對最大概似估計(MLE)與最大擬概似估計(MPLE)作比較,並進行探討是否可以MPLE取代MLE。我們發現在(1)、(2)情形下,MPLE與MLE一致;但在(3)情形時,MPLE與MLE不一致。在(3)情形下,透過數值模擬的實驗,發現MPLE與MLE的差異似乎有隨著相關係數變大而變大的趨勢。因此在給定一些條件分配時,雖然擬概似函數容易建立以估計參數,但MPLE相對於MLE的誤差有可能會比較大。另外,就如二維常態下的例子所示,即使MPLE與MLE一致,相對於MLE而言,MPLE的推導與計算通常較為複雜。因此仍應盡可能尋找對應的聯合密度函數,以計算最大概似估計。
    If the given conditional distributions are compatible, then their corresponding joint distribution exists. In such case, we may be able to find its joint p.d.f. and to find maximum likelihood estimators of the parameters. However, when it is not easy to find the joint p.d.f. or the expression of the joint p.d.f. is too complicated, we may use the maximum pseudo-likelihood estimators to estimate the unknown parameters. In this thesis, using three different bivariate joint distributions, we study the difference between their maximum likelihood estimator (MLE) and maximum pseudo-likelihood estimator (MPLE) to find out if MPLE may replace MLE. These three distributions are Gumbel’s bivariate exponential distribution, bivariate normal distribution, and Marshall and Olkin’s bivariate exponential distribution. We find that MPLE’s and MLE’s are the same under Gumbel’s bivariate exponential distribution and bivariate normal distribution. However, it’s not possible that MPLE’s and MLE’s could be the same under Marshall and Olkin’s bivariate exponential distribution. In addition, through computer simulation study on Marshall and Olkin’s bivariate exponential distribution, we find that the difference between MPLE and MLE seems getting larger if the correlation coefficient is becoming larger. Finally, the derivation and/or computation of the MPLE for some distributions may be too complicated, even their MPLE’s and MLE’s are the same. Hence, it may not be worth of using MPLE, like the bivariate normal case. Therefore, we suggest finding out the joint p.d.f. first to estimate the parameters through MLE if it is possible, instead of using MPLE.
    Reference: [1] Besag, J. E. (1975) Statistical Analysis of Non-Lattice Data. The Statistician, Vol. 24, No. 3, pp. 179-195
    [2] Arnold, B. C. and Strauss D. (1991) Pseudolikelihood Estimation: Some Examples. The Indian Journal of Statistics Vol.53, Series B, Pt. 2, pp. 233-243
    [3] 蕭惠玲(2010):二維聯合分配下條件常態分配相容性之探討。國立政治大學應用數學系教學碩士在職專班碩士論文。
    [4] Kotz, S., Balakrishnan, N. and Johnson N. L. (2000) Continuous Multivariate Distributions, Vol. 1. John Wiley, New York.
    [5] 羅純、王築娟(2002):Gumbel分佈參數估計及在水位資料分析中應用。上海應用技術學院數理教學部。
    [6] Nadarajah, S. and Kotz, S. (2005) Reliability for some bivariate exponential distributions. Mathematical Problems in Engineering, Vol.2006, Article ID 41652, pp. 1-14
    [7] 李國安(2000):多元Marshall~Olkin型指數分布的特徵及參數估計。工程數
    學學報,第22卷第6期,1055-1062。
    [8] 彭江艷、何平(2004)。多維指數分布模型。數學的實踐與認識,第34
    卷第7期,102-106。
    Description: 碩士
    國立政治大學
    應用數學系數學教學碩士在職專班
    99972010
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099972010
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    201001.pdf5729KbAdobe PDF2700View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback