English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51948946      Online Users : 763
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/59312
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59312


    Title: 離散型風險模型應用於銀行財務預警系統
    Application of Discrete-time Hazard Model in forecasting bankruptcy in banking industry
    Authors: 蕭文彥
    Contributors: 林士貴
    蕭文彥
    Keywords: 銀行
    銀行財務危機
    財務預警模型
    離散型風險模型
    bank
    bank failure
    early warning system
    discrete time hazard mode
    Date: 2012
    Issue Date: 2013-09-02 16:04:55 (UTC+8)
    Abstract: 本財務預警模型研究延續Shumway(2001)年所提出的離散型風險模型(Discrete-time Hazard Model)架構,即Shumway 所稱之多期邏輯斯迴歸模型(Multiperiod logistic regression model) ,來建立銀行財務預警模型。不同於Shumway所提出的Log 基期風險式,研究者根據實際財務危機發生機率圖提出Quadratic 基期風險式。由於離散型風險模型考量與時間相依共變量(Time-dependent covariate),該模型可以納入隨時間變動的的市場與總體變數,這是單期模型無法達到的。實證結果顯示,不論是否有加入總體與市場變數,Quadratic 基期風險式離散型模型在樣本內檢測表現都比單期模型與Log 基期風險式離散型模型好,研究亦顯示樣本外的預測Quadratic基期風險式在大多數情況都優於Log 基期風險式與單期模型
    This paper continues Shumway(2001) studies on discrete time hazard model, the so called multi-period logistic regression model, to develop a bank failure early warning model . Different from log baseline hazard form proposed by Shumway, author present quadratic baseline hazard form based on the pattern of real default rate. By incorporating time-varying covariates, our model enables us to utilize macroeconomic and market variables, which cannot be incorporated into in a one-period model. We find that our model significantly outperforms the single period logit model and Log baseline hazard model with and without the macroeconomic and market variables at in-sample estimation. The improvement in accuracy comes both from the time-series bank-specific variables and from the time-series macroeconomic variables. Our research also shows that quadratic baseline hazard model outperforms Log baseline hazard model and single period logit model in out-of-sample prediction.
    Reference: 林妙宜. (2002). 公司信用風險之衡量, 政治大學金融研究所碩士論文.
    徐美珍. (2004). 企業財務危機之預測, 政治大學統計學系碩士論文.
    卜志豪. (2009). 多期邏輯斯迴歸模型應用在企業財務危機預測之研究, 政治大學統計系碩士論文.
    陳業寧, 王衍智, & 許鴻英. (2004). 台灣企業財務危機之預測: 信用評分法與選擇權評價法孰優?. 風險管理學報.
    李君屏,陳宏輝.(2007). 存款保險之評價:信用風險模型之應用, 風險管理學報.
    黃瑞卿, 吳中書, 林金龍, & 蕭兆祥. (2012). 台灣企業財務危機因子的實證研究, 台灣金融財務季刊
    Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609.
    Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt (Vol. 289)
    Altman, E. I., & Saunders, A. (1997). Credit risk measurement: Developments over the last 20 years. Journal of Banking & Finance, 21(11), 1721-1742.
    Arena, M. (2008). Bank failures and bank fundamentals: A comparative analysis of Latin America and East Asia during the nineties using bank-level data. Journal of Banking & Finance, 32(2), 299-310.
    Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71.
    Beaver, W. H., McNichols, M. F., & Rhie, J.-W. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10(1), 93-122.
    Bedendo, M., & Bruno, B. (2012). Credit risk transfer in US commercial banks: What changed during the 2007–2009 crisis? Journal of Banking & Finance.
    Begley, J., Ming, J., & Watts, S. (1996). Bankruptcy classification errors in the 1980s: An empirical analysis of Altman`s and Ohlson`s models. Review of Accounting Studies, 1(4), 267-284.
    Bharath, S., & Shumway, T. (2004). Forecasting default with the KMV-Merton model. Paper presented at the AFA 2006 Boston Meetings Paper.

    Bharath, S. T., & Shumway, T. (2008). Forecasting default with the Merton distance to default model. Review of Financial Studies, 21(3), 1339-1369.
    Bonfim, D. (2009). Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking & Finance, 33(2), 281-299.
    Brown, C. C. (1975). On the use of indicator variables for studying the time-dependence of parameters in a response-time model. Biometrics, 31(4), 863-872.
    Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899-2939.
    Carling, K., Jacobson, T., Lindé, J., & Roszbach, K. (2007). Corporate credit risk modeling and the macroeconomy. Journal of Banking & Finance, 31(3), 845-868.
    Cole, R., Gunther, J., & Cornyn, B. (1995). FIMS: A New Financial Institutions Monitoring System for Banking Organizations. Federal Reserve Bulletin, 81, 1-15.
    Cole, R. A., & Gunther, J. W. (1998). Predicting bank failures: A comparison of on-and off-site monitoring systems. Journal of Financial Services Research, 13(2), 103-117.
    Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 187-220.
    Crouhy, M., Galai, D., & Mark, R. (2000). A comparative analysis of current credit risk models. Journal of Banking & Finance, 24(1), 59-117.
    Demirgüç-Kunt, A. (1989). Modeling large commercial-bank failures: a simultaneous-equation analysis: Federal Reserve Bank of Cleveland, Research Department.
    Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665.
    Espahbodi, P. (1991). Identification of problem banks and binary choice models. Journal of Banking & Finance, 15(1), 53-71.
    Gajewski, G. R. (1989). Assessing the risk of bank failure. Paper presented at the Federal Reserve Bank of Chicago Proceedings.
    Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5-34.
    Hoggarth, G., Reis, R., & Saporta, V. (2002). Costs of banking system instability: some empirical evidence. Journal of Banking & Finance, 26(5), 825-855.
    Hull, J. (1989). Assessing credit risk in a financial institution`s off-balance sheet commitments. Journal of Financial and Quantitative Analysis, 24(4), 489-501.
    Jagtiani, J., & Lemieux, C. (2001). Market discipline prior to bank failure. Journal of Economics and Business, 53(2), 313-324.
    Lane, W. R., Looney, S. W., & Wansley, J. W. (1986). An application of the Cox proportional hazards model to bank failure. Journal of Banking & Finance, 10(4), 511-531.
    Lawless, J. F. (2003). Statistical models and methods for lifetime data (Vol. 362): John Wiley & Sons.
    Lee, S. H., & Urrutia, J. L. (1996). Analysis and prediction of insolvency in the property-liability insurance industry: a comparison of logit and hazard models. Journal of Risk and Insurance, 121-130.
    Lennox, C. (1999). Identifying failing companies: a re-evaluation of the logit, probit and DA approaches. Journal of Economics and Business, 51(4), 347-364.
    Levine, R. (2005). Finance and growth: theory and evidence. Handbook of economic growth, 1, 865-934.
    Martin, D. (1977). Early warning of bank failure: A logit regression approach. Journal of Banking & Finance, 1(3), 249-276.
    Meyer, P. A., & Pifer, H. W. (1970). Prediction of bank failures. The Journal of Finance, 25(4), 853-868.
    Nam, C. W., Kim, T. S., Park, N. J., & Lee, H. K. (2008). Bankruptcy prediction using a discrete‐time duration model incorporating temporal and macroeconomic dependencies. Journal of Forecasting, 27(6), 493-506.
    Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 18(1), 109-131.
    Pettway, R. H., & Sinkey, J. F. (1980). Establishing On‐Site Bank Examination Priorities: An Early‐Warning System Using Accounting and Market Information. The Journal of Finance, 35(1), 137-150.
    Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model*. The Journal of Business, 74(1), 101-124.
    Singer, J. D., & Willett, J. B. (1993). It’s about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational and Behavioral Statistics, 18(2), 155-195.
    Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence: Oxford university press.
    Sinkey, J. F. (1975). A multivariate statistical analysis of the characteristics of problem banks. The Journal of Finance, 30(1), 21-36.
    Thomson, J. B. (1992). Modeling the bank regulator`s closure option: a two-step logit regression approach. Journal of Financial Services Research, 6(1), 5-23.
    Tutz, G., & Pritscher, L. (1996). Nonparametric estimation of discrete hazard functions. Lifetime Data Analysis, 2(3), 291-308.
    West, R. C. (1985). A factor-analytic approach to bank condition. Journal of Banking & Finance, 9(2), 253-266.
    Whalen, G. (1991). A proportional hazards model of bank failure: an examination of its usefulness as an early warning tool. Federal Reserve Bank of Cleveland Economic Review, 27(1), 21-31.
    Wheelock, D. C., & Wilson, P. W. (2000). Why do banks disappear? The determinants of US bank failures and acquisitions. Review of Economics and Statistics, 82(1), 127-138.
    Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82.
    Description: 碩士
    國立政治大學
    金融研究所
    100352006
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1003520061
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    006101.pdf918KbAdobe PDF2319View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback