Reference: | Anselin, L. (1998). Spatial econometrics: methods and models. Kluwer, Dordrecht. Anselin, L. (2003). GeoDa™0.9User’s Guide, CSISS. Basu, S. and Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in house prices. Journal of Real Estate Finance and Economics, 17, 61 – 85. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society B, 36, 192-225. Bourassa, S. C., Cantoni, E. and Hoesli, M. (2007). Spatial dependence, housing submarkets, and house price prediction. Journal of Real Estate Finance and Economics. 35, 143 –160. Brunsdon, C., Fotheringham, A. S. and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281-298. Brunsdon, C., Fotheringham, A. S. and Charlton, M. (1998). Geographically weighted regression-modeling spatial non-stationarity. Journal of the Royal Statistical Society. Series D (The Statistician), 47(3), 431-443. Calderón, G. F. A. (2009). Spatial regression analysis vs. kriging methods for spatial estimation. International Advances in Economic, 15, 44-58. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field scale variability of soil properties in central iowa soils. Soil Science Society of America Journal, 58, 1501 – 1511. Chica-Olmo, J. (1995). Spatial estimation of housing prices and locational rents. Urban Studies, 32(8), 1331-1344. Chica-Olmo, J. (2007). Prediction of house location price by multivariate spatial method: co-kriging. Journal of Real Estate Research, 29, 91-114. Chun, Y. and Griffith, D. A. (2013). Spatail Statistics & Geostatistics: Theory and Application for Geographic Information Science & Technology, SAGE. Clapp, J., Dubin, R. and Rodriguez, M. (2004). Modeling spatial and temporal house price patterns: a comparison of four models. Journal of Real Estate Finance and Economics, 29(2), 167-191. Cressie, N. (1991). Statistics for Spatial Data, New York: Wiley. Dubin, R. A. (1998). Predicting house prices using multiple listings data. Journal of Real Estate Finance and Economics, 17, 35 – 59. Dubin, R.A, Pace, R. K. and Thibodeau, T. G. (1999). Spatial autoregression techniques for real estate data. Journal of Real Estate Literature, 7, 79–95. Fotheringham, A.S., Charlton, M.E. and Brunsdon, C. (2000). Quantitative Geography, SAGE. Fregonara, E., Rolando, D. and Semeraro, P. (2012). The value spatial component in the real estate market: the Turin case study. Aestimum60, Giugno, 85-113. Gelfand, A. E., Ecker, M. D, Knight, J. R., and Sirmans, C. F. (2004). The dynamics of location in home price. Journal of Real Estate Finance and Economics, 29(2), 149-166. Gillen, K., Thibodeau, T. and Wachter, S. (2001). Anisotropic autocorrelation in house price. Journal of Real Estate Finance and Economics, 23, 5-31. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation, New York: Oxford University Press. Johnston, K., Ver Hoef, J.M., Krivoruchko, K. and Lucas. N. (2003). Using ArcGIS Geostatistical Analyst, ESRI Press. Kulczycki, M. and Ligas, M. (2007). Spatial Statistics for Real Estate Data, Strategic Integration of Surveying Services, Hong Kong: SAR, China. LeSage, J. P. and Pace, R. K. (2004). Models for spatial dependent missing data. Journal of Real Estate Finance and Economics, 29 (2), 233-254. Liu, D., Wang, Z., Zhang, B., Song, K., Li, X. and Li, J. (2006). Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, northeast china. Agriculture, Ecosystems and Environment, 113, 73 – 81. Lloyd, C. D. (2011). Local Models for Spatial Analysis, CRC Press. Long, F. Páez, A. and Farber, S. (2007). Spatial effects in hedonic price estimation: a case study in the city of Toronto, CSpA Working Paper, McMaster University. Matheron, G. (1963). Principle of geostatistics. Economic Geology, 58, 1246-1266. Matthews, S. A. and Yang, T. C. (2012). Mapping the results of local statistics: using geographically weighted regression. Demographic Research, 26 (6), 151-166. Militino, A, F., Ugarte, M. D. and García-Reinaldos, L. (2004). Alternative models for describing spatail dependencr among dwelling selling prices. Journal of Real Estate Finance and Economics, 29(2), 193-209. Mitchell, A. (2005). The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics, ESRI Press. Moran, P. A. P. (1948). The interpretation of statistical maps. Biometrika, 35, 255–260. Osland, L. (2010). An application of spatial econometrics in relation to hedonic house price modeling. Journal of Real Estate Research, 32 (2), 289-320. Pace, R. K., Barry, R. and Simans, C. F. (1998). Spatail statistics and real estate. Journal of Real Estate Finance and Economics, 17(1), 5-13. Pace, R. K. and LeSage, J. P. (2004). Spatail statistics and real estate. Journal of Real Estate Finance and Economics, 29 (2), 147-148. Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Political Economy, 82, 34-55. Tsutsumi, M. and Seya, H. (2008). Measuring the impact of large-scale transportation projects on land price using spatial statistical models. Paper in Regional Science, 87, 385–401. Wackernagel, H. (1995). Multivariate Geostatistics: An Introduction with Applications, Springer. Zhu, B., Füss, R. and Rottke, N. B. (2011). The predictive power of anisotropic spatial correlation modeling in housing prices. Journal of Real Estate Finance and Economics, 42, 542 – 565. Yoo, E. H. and Kyriakidis, P. C. (2009). Area-to-point kriging in spatial hedonic pricing models. Journal of Geographical Systems, 11, 381-406. |