參考文獻: | [1] Patrick Billingsley. Probability and Measure. John Wiley & Sons, New York, 1995.
[2] Taou.k Bouezmarni, Jeroen V. K. Rombouts, and Abderrahim Taamouti. A nonparametric copula based test for conditional independence with applications to Granger causality. Working papers, Departamento de Economia Universidad Carlos III de Madrid, 2009.
[3] Yu-Hsiang Cheng and Tzee-Ming Huang. A conditional independence test for dependent data based on maximal conditional correlation. Journal of Multivariate Analysis, 107:210–226, 2012.
[4] Jacques Dauxois and Guy Martial Nkiet. Nonlinear canonical analysis and independence tests. The Annals of Statistics, 26(4):1254–1278, 1998.
[5] David L. Banks (ed.), Campbell B. Read (ed.), and Samuel Kotz (ed.). Encyclopedia of Statistical Sciences (9 Vols. Plus Supplement), Volume S. John Wiley & Sons, 1989. [6] Stephen E. Fienberg. The Analysis of Cross-classified Categorical Data. MIT Press, 1980. [7] J. P. Florens and Denis Fougere. Noncausality in continuous time. Econometrica, 64(5):1195–1212, 1996. [8] J. P. Florens and M. Mouchart. A note on noncausality. Econometrica, 50(3):583–591, 1982. [9] Harold Hotelling. Relations between two sets of variates. Biometrika, 28:321– 377, 1936.
[10] Tzee-Ming Huang. Testing conditional independence using maximal nonlinear conditional correlation. The Annals of Statistics, 38(4):2047–2091, 2010. [11] Anant M. Kshirsagar. Multivariate Analysis. Marcel Dekker, Inc., New York, 1972.
[12] Lexin Li, R. Dennis Cook, and Christopher J. Nachtsheim. Model-free variable selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 67(2):285–299, 2005. [13] Oliver Bruce Linton and Pedro Gozalo. Conditional independence restrictions: Testing and estimation. Cowles Foundation Discussion Papers 1140, Cowles Foundation, Yale University, 1996. [14] Roger B. Nelsen. An Introduction to Copulas. Springer, New York, 2006.
[15] Efstathios Paparoditis and Dimitris N. Politis. The local bootstrap for kernel estimators under general dependence conditions. Annals of the Institute of Statistical Mathematics, 52(1):139–159, 2000.
[16] Karl Pearson. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5, 50(302):157–175, 1900.
[17] Larry L. Schumaker. Spline Functions: Basic Theory. Wiley-Interscience, New York, 1981.
[18] Liangjun Su and Halbert White. A consistent characteristic function-based test for conditional independence. Journal of Econometrics, 141:807-834, 2007.
[19] Liangjun Su and Halbert White. A nonparametric Hellinger metric test for conditional independence. Econometric Theory, 24(4):829–864, 2008.
[20] S. S. Wilks. Certain generalizations in the analysis of variance. Biometrika, 24:471–494, 1932. |