政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/58943
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51288881      線上人數 : 562
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/58943


    題名: 資產模型建構與其資產配置之應用
    Asset Modeling with Non-Gaussian Innovation and Applications to Asset Allocation
    作者: 陳炫羽
    Chen, Hsuan Yu
    貢獻者: 黃泓智
    Huang, Hong Chih
    陳炫羽
    Chen, Hsuan Yu
    關鍵詞: 厚尾
    偏態
    峰態
    多元仿射JD
    多元仿射VG
    多元仿射NIG
    資產配置
    heavy-tailness
    skewness
    kurtosis
    multivariate affine JD
    multivariate affine variance gamma
    multivariate affine normal inverse Gaussian
    asset allocation
    日期: 2012
    上傳時間: 2013-07-22 11:19:02 (UTC+8)
    摘要: 因為股票市場常具有厚尾、偏態和峰態的特性且在國際的股票市場之間,股票報酬長存在有尾端相依的情況,所以我們的資產模型不能選用Gaussian分配。
    近幾年來,常用GH 分配建構單維度的股票報酬。這篇文章將利用多元仿射JD、多元仿射VG 和多元仿射NIG分配去建構風險性資產的報酬並請應用到資產配置。

    建構風險性資產的報酬後,我們提供兩種不同形式的投資組合並且可以導出投資組合的期望值、變異數、偏態和峰態。我們嘗試以投資組合的期望值、變異數、偏態和峰態當成我們的目標函數,然後得出未來最佳的投資組合的權重。為了讓我們的資產配置更加動態和有效率,我們重新估計模型的參數、選擇最佳的投資組合權重,然後重新評估最佳的資產配置在每個決策日期。實證結果發現當股票市場的表現好的時候,我們建議資產配置應使用偏態當成我們的目標函數,但是當股票市場的表現太好的時候,我們建議資產配置應使用變異數當成我們的目標函數。
    Since the stock markets always have the characteristics of heavy-tailness, skewness and kurtosis and there exists tail dependence among the international stock markets, we can’t use the Gaussian distribution as our model. Recently, the generalized hyperbolic (GH) distribution has been suggested to fit the single stock returns. This article will use the multivariate affine JD (MAJD), multivariate affine variance gamma (MAVG) and multivariate affine normal inverse Gaussian (MANIG) distributions to construct the risky asset returns, and apply them to asset allocation.

    After constructing the risky asset returns, we provide two different forms of portfolio and obtain the mean, variance, skewness, kurtosis of portfolio. We can try to select the optimal weights of portfolio by using the mean, variance, skewness, kurtosis of portfolios as our objective functions. To make our asset allocation more dynamic and efficient, we re-estimate all parameters for our models, select the optimal weights of portfolio, and re-assess the optimal asset allocation at each decision date. Empirically, when the performances of stock markets are good, we suggest that our asset allocation uses the skewness as the objective function. When the performances of stock markets are not good, we suggest that our asset allocation uses the variance as the objective function.
    參考文獻: Arditti, Fred D., 1967, Risk and the required return on equity, Journal of Finance, 22, 19-36.
    Alles, L.A. and J.L. Kling (1994):Regularities in the Variation of Skewness in Asset Returns, Journal of Financial Research, 17, 427-438.
    Barndorff-Nielsen, O. 1977. Exponentially decreasing distributions for the logarithm of particle size.Proceedings of the royal society london A, 353, 401–419.
    Barndorff-Nielsen, O. E., 1978. Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics 5, 151-157.
    Blasild, P., and J. L. Jensen, 1981, Multivariate distributions of hyperbolic type. In: C. Taillie, G. Patil, and B. Baldessari (Eds.), Statistical distributions in scientific work, Dordrecht Reidel, 4, 45-66.
    Bekaert, G., C.B. Erb, C.R. Harvey and T.E. Viskanta (1998): Distributional Characteristics of Emerging Market Returns and Asset Allocation, Journal of Portfolio Management, 24, Winter, 102-116.
    Chamberlain, G. (1983): A Characterization of the Distributions That Imply Mean-Variance Utility Functions, Journal of Economic Theory, 29, 185-201.
    Eberlein, E., Keller, U., 1995. Hyperbolic Distributions in Finance. Bernoulli, 281-299.
    Erb C.B., C.R. Harvey and T.E. Viskanta (1999): New Perspective on Emerging Market Bonds, Journal of Portfolio Management,25, Winter, 83-92.
    Fama, Eugene (1965), The Behavior of Stock Prices, Journal of Business, 47, 244-280.
    Fajardo, J., Farias, A., 2004. Generalized hyperbolic distributions and Brazilian data.
    Brazilian Review of Econometrics 24, 249-271.
    Fajardo, J., Farias, A., 2009. Multivariate Affine Generalized Hyperbolic Distributions: An Empirical Investigation. International Review of Financial Analysis 18, 174-184.
    Fajardo, J., Farias, A., 2010. Derivative Pricing Using Multivariate Affine Generalized Hyperbolic Distributions. Journal of Banking and Finance 34, 1607-1617.
    Jurczenko E. and Maillet B. (2006). Multi-Moment Asset Allocation and Pricing Models. Wiley.
    Kon S.J. (1984): Models of Stock Returns - A Comparison, Journal of Finance, 39, 147-165.
    Markowitz, H.M. (1952): Portfolio Selection, Journal of Finance, 7, 77-91.
    Mandelbrot, B. (1963): The Variation of Certain Speculative Prices, Journal of Business, 36, pp. 394-419.
    Machina M. and Muller S. M. (1987). Moment preferences and polynomial utility. Economics Letters, 23, 349-353.
    Maroua M. and Jean-Luc P. (2010). International Portfolio Optimization with High Moments. International Journal of Economics and Finance,16 , 157-169.
    Prause, K., 1997. Modelling Financial Data Using Generalized Hyperbolic Distributions. FDM Preprint 48, University of Freiburg.
    Prause, K., 1999. The Generalized Hyperbolic Models: Estimation, Financial Derivatives and Risk Measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
    Raj Aggarwal, Ramesh P. Rao and Takato Hiraki, 1989, “Skewness and Kurtosis in
    Japanese Equity Returns: Empirical Evidence”, The Journal of Financial Research, Vol. XII, No.3.
    Scott, Robert C., and Philip A. Horvath (1980), On the direction of preference for moments of higher order than the variance, Journal of Finance, 35, 915-919.
    Simkowitz, Michael A. and William L. Beedles (1980): Asymmetric Stable Distributed Security Return, Journal of the American Statistical Association, 75, 306-312.
    Schmidt, R., Hrycej, T., Stutzle, E., 2006. Multivariate Distribution Models with Generalized Hyperbolic Margins. Computational Statistics and Data Analysis 50, 2065-2096.
    Tobin, J. (1958): Liquidity Preference as Behavior Toward Risk, Review of Economic Studies, 25, 65-85.
    Theodossiou, P. (1998): Financial Data and the Skewed Generalized t Distribution, Management Science, 44, 1650 1661.
    William L. Beedles, 1979, “On the Asymmetry of Market Returns”, Journal of Financial and Quantitative Analysis, Vol. 14, Issue 3.
    William L. Beedles, 1986, “Asymmetry in Australian Equity Returns”, Australian Journal of Management, Vol. 1, Issue 1.
    描述: 碩士
    國立政治大學
    風險管理與保險研究所
    100358023
    101
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1003580231
    資料類型: thesis
    顯示於類別:[風險管理與保險學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    023101.pdf4222KbAdobe PDF2143檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋