Reference: | [1}潘玉葉,台灣股票上市公司財務危機預警分析,淡江大學管理科學研究所博士論文,1990。
[2]王文英,“運用類神經網路建構台灣上市公司財務危機預警模型”,實踐大學企業管理學系碩士論文,1999。
[3]沈大白、張大成、劉宛鑫,“運用類神經網路建構財務危機預警模型”,貨幣觀測與信用評等,第 38 期,113-120,2001。
[4]邱碧芳,公司財務危機預警資訊之研究-考慮現金流量因素,朝陽科技大學財務金融所碩士論文,2002。
[5]蘇紋慧,中小企業信用評估模式之研究~以中小型製造業為例,國立中山大學財務管理研究所碩士論文,2002。
[6]蔡廷彥,金融機構辦理中小企業移送信保基金保證貸款授信風險評量模式之研究-以某商業銀行為例,中正大學企業管理所碩士論文,2005。
[7]吳楷華,建構財務預警系統之可行性,中山大學高階經營碩士班碩士論文,2005。
[8]江坤林,“資料探勘於個人信用貸款審核之應用”,國立台灣科技大學資訊工程系碩士論文,2006。
[9]張慶光,以資料探勘之決策樹方法建立小額信貸之信用評分模型研究,台灣大學商學組碩士論文,2006。
[10]王景煌,以資料探勘技術建構企業危機預警模式-結合財務與非財務及智慧資本指標,中原大學資訊管理研究所碩士論文,2006。
[11]李惟喬, 我國銀行對中小企業放款之違約預警模式探討,朝陽科技大學保險金融管理系碩士論文,2008。
[12]馮淑玲,中小企業貸款違約預警模式之探討,中華大學科技管理學系(所)碩士論文,2008。
[13]楊宗叡,本國銀行承作中小企業小額授信風險之研究,中山大學人力資源管理研究所碩士論文,2009。
[14]財團法人中小企業信用保證基金,中小企業融資信用保證作業手冊2008年版。
[15]經濟部中小企業處,2010年和2009年中小企業白皮書。
[16]財團法人中小企業信用保證基金,民國98年年報。
[17]財團法人中小企業信用保證基金,信保實務班基金業務與送保資格介紹,信保基金教育訓練講義,2009。
[18]行政院金融監督管理委員會網站http://www.fsc.gov.tw。
[19]財團法人中小企業信用保證基金網站http://www.smeg.org.tw
[20]A. N. Berger and W. S. Frame, “Small Business Credit Scoring and Credit Availability,” Journal of Small Business Management, Vol. 45, No. 1, 522, 2007.
[21]M. J. A. Berry and G. Linoff, Data Mining Techniques: For Marketing Sale and Customer Support, John Wiley & Sons, Inc., 1997.
[22]L. Breiman,” Random Forests,” Machine Learning, Vol. 45, 5-32, 2001.
[23]S. Le Cessie and J. C. van Houwelingen, “Ridge Estimators in Logistic Regression,” Applied Statistics, 41, Vol.1, 191-201, 1992.
[24]C. C. Chang, and C. J. Lin, A Library for Support Vector Machines. URL http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[25]N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer , “SMOTE:Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, Vol.16, 321-357, 2002.
[26]N. V. Chawla, A. Lazarevic, L. O. Hall and K. W. Bowyer, “SMOTEboost: Improving Prediction of the Minority Class in Boosting,” In 7th European Conference on Principles and Practice of Knowledge Discovery in Databases Cavtat-Dubrovnik, Croatia, 107–119, 2003.
[27]Pedro Domingos, “Metacost: A general Method for Making Classifiers Cost Sensitive,” In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, San Diego, 155-164, 1999.
[28]S. Floyd and M. Warmuth, “Sample Compression, Learnability, and the Vapnik-Chervonenkis Dimension,” Machine Learning, Vol.21, 269-304, 1995.
[29]Y. Freund, and R. E. Schapire, “Experiments with a New Boosting Algorithm,” In Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
[30]I. Guyon, B. E. Boser, and V. Vapnik, “Automatic Capacity Tuning of Very Large VC-Dimension Classifiers,” Advances in Neural Information Processing Systems, Vol.5, 147-155, 1993.
[31]J. Han,and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, CA, USA, 2001.
[32]N. Japkowicz and S. Stephen, “The Class Imbalance Problem: A Systematic Study,” Intelligent Data Analysis Journal, Vol. 6, No. 5, 429-450, 2002.
[33]G. H. John, and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, 338-345, 1995.
[34]H. C. Koh, and S. S. Tan, “A Neural Network Approach to the Prediction of Going Concern Status,” Accounting and Business Research, Vol.21, 211-216, 1999.
[35]C. X. Ling and C. Li, “Data Mining for Direct Marketing Problems and Solutions,” In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, 1998.
[36]M. D. Odom, and R. Sharda, “A Neural Network Model forBankruptcy Prediction,” IEEE INNS International Joint Conference on Neural Networks, Vol.2, 163-168, 1990.
[37]J. A. Ohlson, “Financial Ratios and the Probabilistic Prediction of Bankruptcy,” Journal of Accounting Research, Vol. 18, No. 1, 109-131, 1980.
[38]J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, Vol. 1, 81-106, 1986.
[39]J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993.
[40]G. Udo, “Neural Network Performance On the Bankruptcy Classification Problem,” Computers & Industrial Engineering, Vol. 25, 1-4, 377-380, 1993.
[41]I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005. |