政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/57061
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51199519      Online Users : 922
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/57061


    Title: 應用基因演算法決定SETAR門檻區間及其應用
    Use genetic algorithms to determine the SETAR threshold interval and Its Applications
    Authors: 江增堂
    Contributors: 吳柏林
    Wu, Berlin
    江增堂
    Keywords: 非線性
    區間軟計算
    模糊分析
    基因演算法
    門檻自迴歸
    門檻區間
    nonlinear
    soft computing
    fuzzy analysis
    genetic algorithms
    SETAR
    threshold interval
    Date: 2012
    Issue Date: 2013-03-01 09:25:46 (UTC+8)
    Abstract: 近年來,面對傳統線性時間序列的預測問題,有許多技術上的改良而被大量廣泛的使用,但是線性模式往往無法處理常常發生結構改變(structural changes)的問題,這使得非線性(nonlinearity)時間序列轉折點的研究越來越受到重視,利用非線性時間序列解決實例更可以貼近真實情況。再者,隨著模糊理論的蓬勃發展以及區間軟計算(soft computing)的成熟,相較於點估計預測方法所需的嚴格假設,區間估計方法的假設寬鬆許多並且能符合實際情況,可以提供給決策者更彈性的選擇。本文將應用基因演算法(genetic algorithms)針對模糊區間資料(fuzzy data)作模糊分析(fuzzy analysis),找出資料轉折的門檻區間(threshold interval),藉此發展出非線性的區間門檻自迴歸模式(interval SETAR model),最後以台股為例,建構出門檻自迴歸模型與傳統區間ARIMA模式比較,藉此探討其預測方法的效率評估與準確性。
    In recent years, in the face of traditional linear time series forecasting problems, there are many technical improvements and widely used. But linear model are often unable to deal with the problem often happens structural changes, which makes the nonlinear turning point for the study of the time series more and more attention. Use nonlinear time series more close to the real situation. Moreover, with the fuzzy theories flourish and soft computing mature, compared to the point estimate methods required strict assumptions, interval estimation method which without many assumptions can meet the actual situation. It can be provided to decision-makers more flexibility of choice. In this paper, the application of genetic algorithms for fuzzy data to identify structural changes interval (threshold interval), so as to develop the nonlinear range threshold autoregressive mode (interval SETAR model), and finally, for example, the Taiwan stock market, construct a threshold autoregression model with the traditional interval ARIMA model to investigate the prediction method efficiency and accuracy.
    Reference: 吳柏林(1995),時間數列分析導論,華泰書局,台北。
    吳柏林(2005),模糊統計導論方法與應用,五南出版社,台北。
    吳柏林、阮亨中(2000),模糊數學與統計應用,俊傑書局,台北。
    吳柏林、林玉鈞(2002),模糊時間數列分析與預測-以台灣地區加權股價指數為例,應用數學學報,第25卷,第1期,頁67-76。
    程友梅(1995),轉移型時間序列的認定。國立政治大學統計系碩士論文。
    張新發(1996),遺傳演算法在門檻自迴歸模式(d,r)值估計的應用。國立政治大學統計系碩士論文。
    楊亦農(2009),時間序列分析:經濟與財務上之應用,雙葉書廊,台北。
    F.-M. Tseng and G.-H. Tzeng (2002) a fuzzy seasonal ARIMA model for forecasting. Fuzzy sets and systems, 126(3), 367-376.
    H. T. Nguyen and B. Wu (2006) Fundamentals of Statistics with Fuzzy Data. New York:Springer.
    Hansen, B.E. (1997). Inference in TAR Models, Studies in Nonlinear Dynamics and Econometrics, 2, 1-14.
    Hsu, H.L. (2008). Evaluating forecasting performance for interval data. Computers and Mathematics with Applications 56, 2155-2163.
    Hsu, H. L. (2011). Interval Time Series Analysis with Forecasting Efficiency Evaluation, Doctorial Thesis, Department of Mathematical Science, National Chengchi University, Taipei, Taiwan.
    Kumar, K. and Wu, B. (2001).Detection of change points in time series analysis with fuzzy statistics, International Journal of Systems Science 32(9), 1185-1192.
    Ludermir, T. B. (2008). Forecasting models for interval-valued time series. Neurocomputing 71, 3228-3238.
    M. Bleaney, N. Gemmell, R.Kneller(1989) Testing the endogenous growth model: public expenditure, taxation, and growth over the long run.
    M. Khashei, S.R. Hejazi and M. Bijari (2008) A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy sets and systems, 159, 769-786.
    S.K. Chang (2007) On the Testing Hypotheses of Mean and Variance for Interval Data. Management Science & Statistical Decision, 4(2), 63-69.
    Tong, H. & Lim, K. S. (1980). Journal of the Royal Statistical Society, Series B,"Threshold Autoregression, Limit Cycles and Cyclical Data (with discussion)", 42, 245-292.
    Tong, H. (1990). Non-Linear Time Series: A Dynamical System Approach. Oxford University Press.
    Tseng, F.M., Tseng, G.H., Yu, H.C., and Yuan, B.C. (2001). Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy sets and systems 118(1), 9-19.
    V. Kreinovich , H. T. Nguyen and B. Wu (2007) On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems. Information Sciences, 177, 3228-3238.
    Wu, B and Hung, S. (1999). Fuzzy Sets and Systems. A fuzzy identification procedure for nonlinear time series with example on ARCH and bilinear models. 108, 275-287.
    Wu, B. (2011). Efficiency Evaluation in Time Management for School Administration with Fuzzy Data, Technical Report, Department of Mathematical Science, National Chengchi University, Taipei, Taiwan.
    Zhou H. D. (2005). Nonlinearity or structural break – data mining in evolving financial data sets from a Bayesian model combination perspective. Proceedings of the 38th Hawaii International Conference on System Sciences, Hawaii, U.S.A.
    Description: 碩士
    國立政治大學
    應用數學研究所
    99751010
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099751010
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    101001.pdf542KbAdobe PDF2698View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback