政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/56328
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52296209      線上人數 : 661
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/56328
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/56328


    題名: 基於概念飄移探勘的社群多媒體之熱門程度預測
    Popularity prediction of social multimedia based on concept drift mining
    作者: 鄭世宏
    Jheng, Shih Hong
    貢獻者: 沈錳坤
    Shan, Man Kwan
    鄭世宏
    Jheng, Shih Hong
    關鍵詞: 社群多媒體
    社群媒體
    熱門預測
    概念飄移
    局部概念飄移
    分類
    Social Multimedia
    Social Media
    Popularity Prediction
    Concept Drift
    Local Concept Drift
    Classification
    日期: 2012
    上傳時間: 2012-12-03 11:27:18 (UTC+8)
    摘要: 近年來社群平台(Social Media)的興起,提供了人與人之間簡便且快速互相交換各式各樣內容的機會。社群多媒體(Social Multimedia)指的就是使用者在社群平台上所互相交換的多媒體內容,相較於單純的多媒體內容而言,社群多媒體多了寶貴的大量社群平台使用者之間分享互動的記錄,以及社群平台使用者在社群網絡(Social Network)中的各項資訊。如此一來為多媒體內容提供了更多面向的資料,讓社群多媒體比起單純的多媒體內容有更多的應用的可能。
    微網誌(Microblog)是個可以讓使用者自由的即時分享文字訊息的平台,有著許多使用者的當下的心情、眼前所看到聽到的事或與朋友對話等。而微網誌平台相較於其它單純用來分享多媒體內容的社群平台(例如YouTube或Flickr)而言,在微網誌平台上的多媒體內容有明顯的分享傳遞現象。而本研究的目標,就是要利用些多媒體內容在微網誌平台上的分享傳遞的特性與資料,針對群多媒體內容進行熱門預測。
    隨著時間的前進,若以單一同樣的規則來進行熱門預測,將可能造成預測準確率的下降;再者,即使是在同樣的時間點,不同的多媒體內容會有各自隨著時間在熱門上的變化趨勢,還是會有需要不同的規則來進行熱門預測的可能性,也就是所謂的局部概念飄移現象。在此我們將熱門預測問題轉為資料探勘(Data Mining)中的分類(Classification)問題,並同時將局部概念飄移現象納入考慮,提出一個針對微網誌平台上多媒體內容的熱門預測方法。實驗結果顯示,有考慮局部概念飄移的熱門預測方法,在準確率的表現上明顯的優於GCD方法(平均有4%的提升)與Baseline方法(平均有10%的提升),代表我們的熱門預測方法更適合微網誌平台上的多媒體內容,也代表的確有概念飄移與局部概念飄移的現象存在。
    In recent years, the rise of social media offers an easy and fast way for information exchange. Social multimedia refers to the multimedia content that users share on the social media. Different from traditional multimedia, social multimedia contains both the multimedia and user behavior information on social media.
    Microblog is one type of social media. Compared to other social media such as YouTube and Flickr, microblogs provide a more friendly environment for users to propagate social multimedia. The goal of this thesis is to make use of the characteristics and information of propagation on microblogs for popularity prediction of social multimedia.
    The popularity prediction method based on concept drift mining is proposed. In particular, the local concept drift mechanism is employed to capture the local characteristics of social multimedia. By taking the local concept drift into consideration, the task of popularity prediction is transformed into the ensemble classification problem. Experiments on social multimedia collected from plurk show that the proposed approach performs well.
    參考文獻: [1] A. Bifet, J. Gama, M. Pechenizkiy and I. Žliobaitė, “Handling Concept Drift: Importance, Challenges & Solutions,” Tutorial, Proc. of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2011.
    [2] L. Breiman, “Random Forests,” Machine Learning, Vol. 45, Issue 1, Pages 5-32, 2001.
    [3] M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn and S. Moon, “Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems,” IEEE/ACM Transactions on Networking, Vol. 17, Issue 5, Pages 1357-1370, 2009.
    [4] F. Figueiredo, F. Benevenuto and J. M. Almeida, “The Tube over Time: Characterizing Popularity Growth of YouTube Videos,” Proc. of the 4th ACM International Conference on Web Search and Data Mining, 2011.
    [5] L. Hong, O. Dan and B. D. Davison, “Predicting Popular Messages in Twitter,” Proc. of the 20th International Conference Companion on World Wide Web, 2011.
    [6] M. Harries and K. Horn, “Detecting Concept Drift in Financial Time Series Prediction using Symbolic Machine Learning,” Proc. of the 8th Australian Joint Conference on Artificial Intelligence, World Scientific, 1995.
    [7] X. Jin, A. Gallagher, L. Cao, J. Luo and J. Han, “The Wisdom of Social Multimedia: Using Flickr For Prediction and Forecast,” Proc. of the 18th International Conference on Multimedia, 2010.
    [8] L. I. Kuncheva, “Classifier Ensembles for Changing Environments,” Proc. of the 5th International Workshop on Multiple Classifier Systems, 2004.
    [9] K. Lerman and T. Hogg, “Using a Model of Social Dynamics to Predict Popularity of News,” Proc. of the 19th International Conference on World Wide Web, 2010.
    [10] M. Naaman, H. Becker and L. Gravano, “Hip and Trendy: Characterizing Emerging Trends on Twitter,” Journal of the American Society for Information Science and Technology, Vol. 62, Issue 5, Pages 902-918, 2011.
    [11] D. R. Wilson and T. R. Martinez, “Improved Heterogeneous Distance Functions,” Journal of Artificial Intelligence Research, Vol. 6, Issue 1, Pages 1-34, 1997.
    [12] G. Szabo and B. A. Huberman, “Predicting the Popularity of Online Content,” Communications of the ACM, Vol. 53, Issue 8, Pages 80-88, 2010.
    [13] W. N. Street and Y. Kim, “A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification,” Proc. of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001.
    [14] J. C. Schlimmer and R. H. Granger, “Incremental Learning from Noisy Data,” Journal of Machine Learning, Vol. 1, Issue 3, Pages 317-354, 1986.
    [15] C. T. Ho, Modeling and Visualizing Information Propagation in Micro-Blogging Platform, Master Thesis, Graduate Institute of Networking and Multimedia, National Taiwan University, 2010.
    [16] A. Tsymbla and M. Pechenizkiy, P. Cunningham and S. Puuronen, “Dynamic Integration of Classifiers for Handling Concept Drift,” An International Journal on Multi-Sensor, Multi-Source Information Fusion, Vol. 9, Issue 1, Pages 56–68, 2008.
    [17] H. Wang, W. Fan, P. S. Yu and J. Han, “Mining Concept-Drifting Data Streams Using Ensemble Classifiers,” Proc. of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003.
    [18] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools with Java Implementations, 2000.
    [19] J. Yang and S. Counts, “Predicting the Speed, Scale, and Range of Information Diffusion in Twitter,” Proc. of the 4th International AAAI Conference on Weblogs and Social Media, 2010.
    [20] J. Z. Kolter and M. A. Maloof, “Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift,” Proc. of the 3th IEEE International Conference on Data Mining, 2003.
    [21] I. Žliobaitė, Learning under Concept Drift: an Overview, Technical Report, 2009.
    [22] 社群媒體(Social Media),http://en.wikipedia.org/wiki/Social_media
    描述: 碩士
    國立政治大學
    資訊科學學系
    98753010
    101
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098753010
    資料類型: thesis
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2388檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋