English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51160877      Online Users : 915
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54940


    Title: 計算大尺度複雜網路 :以競賽網路及電力網路為例
    Computational large-scale complex networks : competition network and power grid
    Authors: 劉彥宏
    Liu, Yen Hung
    Contributors: 蕭又新
    Shiau, Yuo Hsien
    劉彥宏
    Liu, Yen Hung
    Keywords: 小世界
    無尺度度分布
    連鎖故障行為
    複雜網路
    脆弱性分析
    small world
    scale-free degree distribution
    cascading failure
    complex network
    vulnerability
    Date: 2011
    Issue Date: 2012-10-30 14:24:34 (UTC+8)
    Abstract: 這篇論文主要可以分成兩個部分。第一部分,我們整理了關於複雜網路的初步研討。最重要的特性有:小世界網路、無尺度度分布。並且介紹了三種模型:BA 模型、EBA模型,以及W-S small world model。接著對於一份實際的社會網路資料—台灣業餘桌球選手對戰網路,做網路的結構分析,試驗其是否具有上述的兩種特性。透過兩種可以模擬出無尺度度分布特性的模型:BA以及EBA模型。我們藉由這兩種模型模擬的結果,以及和競賽網路的比較,試者去闡述模型與理論間為何有些相似,卻又如此不同。並討論了賽制設計對於結構的影響。
    在第二部分裡,我們回顧了一些對於網路的拓樸性效率以及可靠度效率的研討,並且討論了兩種不同負載定義下的連鎖故障行為。最後我們使用其中三種方法:拓樸性效率脆弱性、參與中間度(betweenness)過載引發的連鎖性故障行為,以及電力網路的動態電流變化造成的連鎖性故障,對於一個假想的電網做傳輸線的弱點排序。其中由動態電流過載(transient dynamic overload)造成的連鎖性故障可以視為一個簡化後的電力動態網路模型,藉由這三者間排序的不同,我們可以看到複雜網路分析以及基於電力網路傳輸特性所模擬的結果差異。
    This thesis can be divided into two parts. In the first part, we review some basic properties of the complex networks. The most important features are: small world networks and scale-free degree distribution. Then, we introduce three complex models : BA model, EBA model, and W-S small world model. Next, we analyze a real data—CTTC network to test if it has the features we have mentioned above. By the EBA and BA model simulations, we try to illustrate why there are some similarities between the simulations and real data, but they are still so different in most of aspects.
    In the second part, we review the definitions of the topology and reliable efficiency of a network structure. Next, we discuss two cascading failure model based on different definitions of load of a transmission line in a power grid. Finally, we use three different ways: topology efficiency vulnerability, cascading failure triggered by betweenness overload, and cascading failure triggered by the transient dynamics overload to test the vulnerability of edges in an assuming power grid. The cascading failure triggered by the transient dynamic overload can be viewed as a simplified power flow model. We sort the most vulnerable edges in three different ways. By this, we can observe the difference of the vulnerability analysis based on the complex network and the characteristic of the power transmission..
    Reference: [1] M.E.J. Newman, A.-L.s. Barabási, D.J. Watts, The structure and dynamics of networks, Princeton University Press, Princeton, 2006.
    [2] M.E.J. Newman, Networks : an introduction, Oxford University Press, Oxford ; New York, 2010.
    [3] J. Travers, S. Milgram, Experimental Study of Small World Problem, Sociometry, 32 (1969) 425-443.
    [4] D.J. Watts, S.H. Strogatz, Collective dynamics of `small-world` networks, Nature, 393 (1998) 440-442.
    [5] R. Albert, H. Jeong, A.L. Barabasi, Error and attack tolerance of complex networks, Nature, 406 (2000) 378-382.
    [6] A. Motter, Y.-C. Lai, Cascade-based attacks on complex networks, Physical Review E, 66 (2002).
    [7] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Transient Dynamics Increasing Network Vulnerability to Cascading Failures, Physical Review Letters, 100 (2008).
    [8] K.I. Goh, B. Kahng, D. Kim, Universal Behavior of Load Distribution in Scale-Free Networks, Physical Review Letters, 87 (2001).
    [9] E.R.C. Edward .A. Bender, The asymptotic number of labeled graphs with given degree sequences, Journal of Combinatorial Theory, Series A, 24 (1978) 296-307.
    [10] I.d.S. Pool, M. Kochen, Contacts and Influence, Social Networks, 1 (1978) 5-51.
    [11] B. Uzzi, J. Spiro, Collaboration and creativity: The small world problem, Am J Sociol, 111 (2005) 447-504.
    [12] A.L. Barabasi, R. Albert, Emergence of scaling in random networks, Science, 286 (1999) 509-512.
    [13] S.H. Strogatz, Exploring complex networks, Nature, 410 (2001) 268-276.
    [14] R. Albert, A.L. Barabasi, Topology of evolving networks: local events and universality, Phys Rev Lett, 85 (2000) 5234-5237.
    [15] D.J. Watts, S.H. Strogatz, Collective dynamics of `samll-world` networks, Nature, 343 (1998) 440-442.
    [16] S. Redner, How popular is your paper? An empirical study of the citation distribution, THE EUROPEAN PHYSICAL JOURNAL B, 4 (1998) 131-134.
    [17] D.M. Pennock, G.W. Flake, S. Lawrence, E.J. Glover, C.L. Giles, Winners don`t take all: Characterizing the competition for links on the web, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 5207-5211.
    [18] O. Sporns, D.R. Chialvo, M. Kaiser, C.C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn Sci, 8 (2004) 418-425.
    [19] C. Li, P.K. Maini, An evolving network model with community structure, JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL, 38 (2005) 9741-9749.
    [20] V. Latora, M. Marchiori, Efficient Behavior of Small-World Networks, Physical Review Letters, 87 (2001).
    [21] I. Eusgeld, W. Kröger, G. Sansavini, M. Schläpfer, E. Zio, The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures, Reliability Engineering & System Safety, 94 (2009) 954-963.
    [22] I. Simonsen, Diffusion and networks: A powerful combination!, Physica A: Statistical Mechanics and its Applications, 357 (2005) 317-330.
    [23] S. Arianos, E. Bompard, A. Carbone, F. Xue, Power grid vulnerability: a complex network approach, Chaos, 19 (2009) 013119.
    [24] X.Y. Ajendra Dwivedi, Peter Sokolowski, Identifying Vulnerable Lines In a Power Network using Complex Network Theory, IEEE International Symposium on Industrial Electronics (ISlE 2009), (2009).
    Description: 碩士
    國立政治大學
    應用物理研究所
    98755010
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0987550103
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    010301.pdf3500KbAdobe PDF2808View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback