English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51102144      Online Users : 968
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/54645
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54645


    Title: 相對移動率應用在區間時間序列預測及其效率評估
    The Application of Relative Moving Ratio for Forecasting and performance Evaluation in Interval Time Series
    Authors: 李治陞
    Li, Chih-Sheng
    Contributors: 劉明郎
    吳柏林

    Liu, Ming-Long
    Wu, Berlin

    李治陞
    Li, Chih-Sheng
    Keywords: 模糊時間序列
    反模糊化
    區間預測
    相對移動率
    門檻自廻規模型
    fuzzy time series
    defuzzification
    interval prediction
    relative moving ratio
    threshold autoregressive models
    Date: 2011
    Issue Date: 2012-10-30 11:27:57 (UTC+8)
    Abstract: 時間序列是用來預測未來趨勢的一種重要技術,然而在實務上建構時間序列模型時,參數很難有效估計。原因可能來自於時間序列本身的模糊性質,而導致參數的不確定性使得預測結果產生極大誤差。如果將參數模糊化引進時間序列的模型中,往往過於複雜。本論文提出相對移動率為新的模糊時間序列建構方法,讓原本具有模糊性質的時間序列經由反模糊化(defuzzification)後,以點估計的方式估計起始中心點,經由適當的修正調整為較佳的中心點以及半徑,建立有效的區間時間序列。並將相對移動率引進門檻自廻規模型中,取代原有之門檻值設定,並建立區間時間序列。最後,我們使用台灣加權股價指數為例,以本論文所提出之方法進行區間預測及效率評估。
    The time series is an important technology that is used to predict future trends, however in the real world, parameter is difficult to estimate effectively when we construct a time series model due to the of the fuzzy property of the times series data. The estimated parameters in the time series will cause a big error due to the uncertainty of fuzzy data. It is too complex to introduce the fuzzy parameters into the time series model. In this thesis, we propose relative moving ratio as a new criteria in constructing procedure of an interval time series. We defuzzify a fuzzy data and use point estimation to obtain an initial center, then we adjust the center and radius making it more appropriately. The resulting center and radius is then become an interval time series that can be use to forecast an interval data. We also apply relative moving ratio in threshold autoregressive models by replacing the threshold in constructing interval time series. Finally, in empirical studies chapter, we use Taiwan weighted Stock Index as examples to evaluate the performance of the proposed two methods in building the interval time series.
    Reference: 吳柏林(1995),時間數列分析導論,華泰書局,台北。
    吳柏林(2005),模糊統計導論方法與應用,五南出版社,台北。
    吳柏林、阮亨中(2000),模糊數學與統計應用,俊傑書局,台北。
    吳柏林、林玉鈞(2002),模糊時間數列分析與預測—以台灣地區加權股價指數為例,應用數學學報,第25卷,第一期,頁67-76。
    楊奕農(2009),時間序列分析:經濟與財務上之應用,雙葉書廊,台北。
    Akaike, H. (1973). Information theory and an extension of maximum likelihood principle, Second International Symposium on Information Theory 1, 267-281.
    Box, G. P. and Jenkins, G. M. (1976). Time series analysis forecasting and control. San Francisco: Holden-Day.
    Byers, J. D. and Peel, D. A. (1995). Evidence on volatility spillovers in the interwar floating exchange rate period based on high/low prices, Applied Economics Letters 2(10), 394-396.
    Chow, G. C. (1960), Tests of equality between sets of coefficients in two linear regressions, Econometrica 28(3), 591-605.
    Donald W. K. A. and Werner P. (1994). Optimal tests when a nuisance parameter is present only under the alternative, Econometrica 62(6), 1383-1414.
    Graham, B. P. and Newell, R. B. (1989). Fuzzy adaptive control of a first-order process. Fuzzy sets and system 31, 47-65.
    Haggan V. and Ozaki T. (1980). Amplitude-dependent exponential AR model fitting for non-linear random vibrations, in Time Series, O. D. Anderson ed., North-Holland, Amsterdam.
    Hsu, H. L. (2011). Interval Time Series Analysis with Forecasting Efficiency Evaluation, Doctorial Thesis, Department of Mathematical Science, National Chengchi University, Taipei, Taiwan.
    Kumar, K. and Wu, B. (2001). Detection of change points in time series analysis with fuzzy statistics, International Journal of Systems Science 32(9), 1185-1192.
    Subba R. T. and Gabr M. (1980). A test for linearity of stationary time series analysis, Journal of Time Series Analysis 1(1), 145-158.
    Tong, R. M. (1978). Synthesis of fuzzy models for industrial processes. Int. J. Gen. 4, 143-162.
    Tong H. and Lim K. S. (1980). Threshold Autoregressive, Limit Cycles and Cyclical Data (with Discussion), Journal of the Royal Statistical Society. Series B 42(3), 245-292.
    Wu, B. (2011). Efficiency Evaluation in Time Management for School Administration with Fuzzy Data, Technical Report, Department of Mathematical Science, National Chengchi University, Taipei, Taiwan.
    Zadeh, L. A. (1965). Fuzzy sets, Information and Control 8, 338-353.
    Zhou H. D. (2005). Nonlinearity or structural break - data mining in evolving financial data sets from a Bayesian model combination perspective, Proceedings of the 38th Hawaii International Conference on System Sciences, Hawaii, U.S.A.
    Description: 碩士
    國立政治大學
    應用數學研究所
    98751007
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098751007
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100701.pdf1493KbAdobe PDF2357View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback