English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51163101      Online Users : 879
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54601


    Title: 解約率因素下附保證給付投資型保險的風險價差
    Risk bearing spreads of GMMB with lapse rates dependent on economic factors
    Authors: 潘冠宇
    Contributors: 張士傑
    潘冠宇
    Keywords: 風險價差
    滿期給付投資型保險
    經濟因子脫退率
    risk spreads
    GMMB
    lapse rates
    Date: 2011
    Issue Date: 2012-10-30 11:24:42 (UTC+8)
    Abstract: 近年來因市場波動劇烈, 保險公司紛紛推出的「附保證投資型保單」, 給
    予保戶在投資上的保證。然而, 附最低給付保證條件卻使得保險公司必須面
    對更大的核保與財務風險。所以計算出附有最低保證條件商品的保費就顯
    得格外地重要。
    傳統附保證保單在訂價時,都是假設固定己知的脫退率,因為他們認為
    脫退率的變化不會是影響保單價值的主因。但在Mary hardy 所著的《Investment Guarantees》一書中page 96 特別提到脫退風險:
    Withdrawals are more problematic. Withdrawals are, to some
    extent, related to the investment experience, and the withdrawal risk is, therefore, not fully diversifiable.
    因此, 本文希望透過建立受經濟因子影響的解約率模型,來得到附保證保險
    的風險價差。
    本文考慮附保證滿期給付投資型商品(GMMB),並且使用 Heston (1993)
    提出的財務市場模型以及參考Mercurio (1996,2001) 評價投資型保險之風
    險承擔價差方法, 使用效用函數來描述保險契約雙方之風險趨避程度。同
    時根據Kolkiewicz & Tan (2006) 假設受經濟因子的危險比率模型(hazard
    rate model), 來反映出資產的平均波動程度會影響保戶的脫退率。最後以
    情境方式分別模擬5、10及15年到期的附保證最低滿期投資型保險之風險
    價差。本研究推導之模型主要得出下列結果: (1) 保單期間愈長, 價差愈大。
    (2) 價外賣權的價差高於價內。(3) 風險規避程度越高買賣價差越大。(4) 脫
    退率受經濟影響愈深, 保單的買賣價差愈大。(5) 當保險公司所保證的價格
    愈高時, 價差的影響愈大。
    With the fluctuation in the financial market in 2008, insurance company provided the consumers with equity-linked life insurances embedded guarantees. On the other hand, there are more risk in the financial literacy and underwriting performance of the insurance company. It is especially important to calculate the premium of the contract embedded investment guarantee properly .
    Traditional method of pricing the contract embedded investment guarantee was assumed that lapse rate was known, because product providers believed lapse rate was not a major factor to price the contract. However,
    Mary hardy’s ”Investment Guarantees” page 96 specifically mentions about the lapse rate risk:
    Withdrawls are more problematic. Withdrawals are, to some
    extent ,related to the investment experience, and the withdrawal risk is, therefore, not fully diversifiable.
    So this article will found the model of lapse rate dependent on economic factors and further get the fair value of one kind of a contract embedded guarantee: GMMB.
    We will build a financial model introduced by Heston (1993) and use the methodology provided by Mercurio (1996,2001) to price the risk bearing gap of a contract embedded guarantee with utility function to depict the risk averse level between investors . And we have lapse rates affected from
    the fluctuation of the implying asset which is the hazard rate model used by Kolkiewicz & Tan (2006). Finally, we will simulate a set of scenarios to present the Risk bearing spreads of equity-linked life insurance embedded
    guarantees whose term are 5、10 and 15 years. The following are the consequences I got: (1) The longer the duration, the larger the spread. (2) The spread out of money is larger than that in the money. (3) The higher the risk aversion, the larger the buy-ask spread. (4) The deeper the influence
    of economy on the lapse rate, the larger the buy-ask spread. (5) The higher guarantee price insurer offer, the deeper the spread affect.
    Reference: 張士傑著, 保險契約之評價與風險管理, 前程文化事業有限公司, 民國99年6月。

    林忠機、楊曉文著, 附保證給付投資型保險之定價與風險評估, 保險事業發展中
    心, 民國100年10月。

    Brennan, M. J., & Schwartz, E. S. (1976). The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics, 3(3), 195-213.

    Chang, M. C., & Jiang, S.-j. (2010). Surrender effects on policy reserves:a simulation analysis of investment guarantee contracts. Global Journal of Business Research, Vol. 4, No. 4, pp. 11-21, 2010.

    Chris O’Brien (2006) The downfall of equitable life in the United Kingdom:the mismatch of strategy and risk management, Risk Management and Insurance Review, volume9, issue 22,189-204.

    Coleman, T. F., Levchenkov, D., & Li, Y. (2007). Discrete hedging of American-type options using local risk minimization. Journal of Banking & Finance, 31(11).

    F¨ollmer, H., & Schweizer, M. (1988). Hedging by sequential regression: An introduction to the mathematics of option trading. ASTIN Bulletin, 18(2), 147-160.

    F¨ollmer, H., & Sondermann, D. (1985). Hedging of non-redundant contingent claims. [Discussion Paper Serie B].
    Hardy, M. (2003). Investment guarantees: modeling and risk management for equity-linked life insurance: John Wiley & Sons.

    Kim, C. (2005). Modeling surrender and lapse rates with economic variables.North American Actuarial Journal, 9(4), 56-70.

    Kolkiewicz, A. W., & Tan, K. S. (2006). Unit-linked life insurance contracts with lapse rates dependent on economic factors. Annals of Actuarial Science, 1, 49-78.

    Møller, T. (1998). Risk-minimizing hedging strategies for unit-linked life insurance contracts. ASTIN Bulletin, 28(1), 17-47.

    Mercurio, F. (2001). Claim pricing and hedging under market incompleteness and ”mean-variance” preferences. European Journal of Operational Research, 133(3), 635-652.

    Sch¨al, M. (1994). On quadratic cost criteria for option hedging. Mathematics of Operations Research, 19(1), 121-131.

    Schweizer, M. (1988). Hedging of options in a general semimartingale mode.[Ph.D. dissertation].

    Schweizer, M. (1991). Option hedging for semimartingales. Stochastic Processes and their Applications, 37, 339-363.
    Schweizer, M. (1994a). Risk-minimizing medging strategies under restricted information. Mathematical Finance, 4, 327-342.

    Schweizer, M. (1995b). On theMinimalMartingaleMeasure and the F¨ollmer-Schweizer Decomposition. Stochastic Analysis and Applications, 13, 573-599.

    Schweizer, M., & F¨ollmer, H. (1988). Hedging by Sequential Regression:an Introduction to the Mathematics of Option Trading. ASTIN Bulletin,18(2), 147-160.32
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    99358023
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099358023
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File SizeFormat
    802301.pdf1012KbAdobe PDF22969View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback