English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50952365      Online Users : 940
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54041


    Title: 熱帶幾何相交理論與熱帶循環之研究
    Other Titles: On Tropical Intersection Theory and Tropical Cycles
    Authors: 蔡炎龍
    Contributors: 國立政治大學應用數學學系
    行政院國家科學委員會
    Keywords: 數學
    Date: 2008
    Issue Date: 2012-10-24 16:13:43 (UTC+8)
    Abstract: 熱帶幾何是近年來備受重視的數學領域。很粗略的說, 熱帶幾何可以將古典幾何及代數幾何的問題, 轉為組合數學的問題, 在許多情況把問題大大簡化。而實際的應用上, 熱帶幾何在短短數年間, 就有不少重要的結果。我們這個計畫以熱帶幾何的角度, 去研究萊夫謝茨束及流形退化的問題。這裡我們會需要熱帶相交理論, 而我們主要的方法是研究熱帶循環, 並把非交換餘調熱帶化。然而, 熱帶相交理論尚在起步的階段。我們準備在這個計畫中, 研究目前有的幾種熱帶相交理論, 證明其等價或找出其中的關係, 或補上不足我們使用的地方。進一步我們會使用本計畫創新的將非交換餘調熱帶化的手法, 先計算簡單非交換餘調熱帶化的問題, 再於對熱帶循環有更深刻的認識後, 能夠推廣到更一般的情況。更重要的是, 我們希望能以這些工具, 研究萊夫謝茨束及問題, 尤其是單值作用在熱帶幾何中正確的建構方式。最後, 個計畫中, 我們準備建構一個幾何社群的網站, 給不單是對熱帶幾何, 乃至所有幾何相關問題有興趣的學者, 能有交流學習的空間。
    Tropical geometry is a new area in Mathematics but has several important results already. Roughly speaking, tropical geometry turns problems in classical geometry and algebraic geometry into combinatorics ones. In this project, we will use tropical geometry to study Lefschetz pencils and manifold degenerations. In order to do this, we need tropical intersection theory and notion of tropical cycles. Unfortunately, tropical intersection theory is still under development. Thus in the two-year project, we will thoroughly study several tropical intersection theories, show the relations.We also plan to tropicalizew non-abelian cohomology: we will calculate simple cases first, and then move to more general ones after we learn more about tropical cycles. Our goal is to study Lefschetz pencils and manifold degenerations, especially tropical version of monodromy theory. Finally, we plan to make a website for all scholars, and students who are interested in geometry (not only in tropical geometry), to communicate with other people their thoughts, share what they have learned, and ask any questions they might have.
    Relation: 基礎研究
    學術補助
    研究期間:9708~ 9807
    研究經費:437仟元
    Data Type: report
    Appears in Collections:[應用數學系] 國科會研究計畫

    Files in This Item:

    File SizeFormat
    4.pdf438KbAdobe PDF2709View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback