English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51049382      Online Users : 939
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/53409


    Title: 異質變異數矩陣之穩健估計
    Other Titles: On Robust Estimation of the Heteroscedasticity Covariance Matrix
    Authors: 鄭宗記
    Contributors: 國立政治大學統計學系
    行政院國家科學委員會
    Keywords: 異質變異;離群值;穩健估計
    Heteroscedasticity;Outlier;Robust diagnostics
    Date: 2009
    Issue Date: 2012-08-30 09:59:29 (UTC+8)
    Abstract: 迴歸模型分析的同質變異(homogenous variance)假設(即誤差之變異數為常數),在實 際資料分析中經常是不適當的。當模型中的誤差存在異質變異時,錯誤的標準誤的估計 將導致無效的統計推論。基於「異質變異一致性共變異數矩陣」(heteroscedasticity consistent covariance matrix,HCCM)估計的檢定方法,在應用上是廣為被使用 (White 1985) ,因其方法無須先明確異質變異的結構性為何。但離群值對於HCCM 的估計有相 當的影響(Cribari-Neto and Zarkos 2001; and Cribari-Neto 2004),因此本計畫將討論異質 變異共變異數矩陣的穩健估計問題,其概念是應用Hubert and Rousseeuw (1997)所提出 之RDL1 穩健統計量,以及Giloni et al. (2006)的加權L1 估計方法。本研究將以模擬方 法針對所提出之穩健估計量的特性作詳細討論;同時將以實際資料分析來陳示該統計量 與傳統結果之差異。
    The assumption of homogenous variance in the normal regression model is not always appropriate. The invalidity of standard inference procedure may be produced due to the wrong estimation of the standard error when the disturbance process in a regression model presents heteroscedasticity. Test based on a heteroscedasticity consistent covariance matrix (short for HCCM) estimator is popular in application because there is no need to specify the structural form of heteroscedasticity and it is easy to compute (White 1985). As several authors have reported that the leverage points are decisive for the finite sample behavior than the degree of heteroscedasticity in the estimation of HCCM (Cribari-Neto and Zarkos 2001; and Cribari-Neto 2004). In this project we propose a robust estimator for the heteroscedasticity covariance matrix, which is based on the concept of RDL1 estimator of Hubert and Rousseeuw (1997) and weighted L1 estimator of Giloni et al. (2006). Simulation studies are carried out to investigate the performance in terms of several configurations, such as sample size, dimension and proportion of outliers in the data. Furthermore, real data examples are used to illustrate the proposed method.
    Relation: 基礎研究
    學術補助
    研究期間:9808~ 9907
    研究經費:580仟元
    Data Type: report
    Appears in Collections:[統計學系] 國科會研究計畫

    Files in This Item:

    File SizeFormat
    98211M003.pdf812KbAdobe PDF21309View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback