English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50803562      Online Users : 607
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/51654
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/51654


    Title: 效用無差異價格於不完全市場下之應用
    Utility indifference pricing in incomplete markets
    Authors: 胡介國
    Hu,Chieh Kuo
    Contributors: 胡聯國
    Hu,Len Kuo
    胡介國
    Hu,Chieh Kuo
    Keywords: 不完全市場
    局部積率平賭
    效用無差異定價
    incomplete markets
    local martingale
    utility indifference pricing
    Date: 2009
    Issue Date: 2011-10-11 19:03:53 (UTC+8)
    Abstract: 在不完全市場下,衍生性金融商品可利用上套利和下套利價格來訂出價格區間。我們運用效用無差異定價於此篇論文中,此定價方式為尋找一個初始交易價,會使在起始時交易商品和無交易商品於商品到期日之最大期望效用相等。利用主要的對偶結果,我們證明在指數效用函數下,效用無差異定價區間會比上套利和下套利定價區間小。
    In incomplete markets, prices of a contingent claim can be obtained between the upper and lower hedging prices. In this thesis, we will use utility indifference pricing to nd an initial payment for which the maximal expected utility of trading the claim is indi erent to the maximal
    expected utility of no trading. From the central duality result, we show that the gap between the seller`s and the buyer`s utility indi erence prices is always smaller than the gap between the upper and lower hedging prices under the exponential utility function.
    Reference: [1] Delbaen, F., P. Grandits, T. Rheinlander, D. Samperi, M. Schweizer, and C. Stricker (2002): Exponential hedging and entropic penalties, Math. Finance 12, 99-123.
    [2] Follmer, H., and A. Schied (2002): Convex Measures of Risk and Trading Constraints, Finance Stochast. 6, 429-447.
    [3] Fritelli, M. (2002a): The minimal Entropy Martingale Measure and the Valuation Problem in Incomplete markets, Math. Finance 10, 39-52.
    [4] Grandits, P., and T. Rheinlander (1999): On the Minimal Entropy Martingale Measure, Preprint, Technical University of Berlin, to appear in Annals
    of Probability.
    [5] Hodges, S. D., and A. Neuberger (1989): Optimal replication of contingent claims under transaction costs, Rev. Future Markets 8, 222-239.
    [6] _Ilhan, A., M. Jonsson,and R. Sircar (2005): Optimal investment with derivative securities, Finance Stochast. 9, 585-595.
    [7] Kabanov, Y. M., and C. Stricker (2002): On the optimal portfolio for the exponential utility maximization: remarks to the six-author paper, Math. Finance 12, 125-134.
    [8] Kramkrov, D. O. (1996): Optimal decomposition of supermartingales and hedging of contingent claims in incomplete security markets. Probab. Theory
    and Relat. Fields 105, 459-479.
    [9] Kunita, H. (2004): Representation of Martingales with Jumps and Application to Mathematical Finance, Advanced Studies in Pure Mathematics, Math. Soc. Japan, Tokyo, 41, 209-232.
    [10] ksendal, B.: Stochastic Di erential Equations: an introduction with applications, 6ed, Springer 2003.
    [11] ksendal, B., and A. Sulem (2009): Risk indi erence pricing in jump di usion markets, Math. Finance 19, 619-637.
    Description: 碩士
    國立政治大學
    應用數學研究所
    96751005
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096751005
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100501.pdf566KbAdobe PDF2781View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback