政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/51305
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113313/144292 (79%)
造访人次 : 50943869      在线人数 : 937
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/51305


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/51305


    题名: 探討大白鼠之風險選擇行為之神經機制
    Investigation of neural mechanisms of risky choice behavior in the rat
    作者: 楊仁豪
    Yang, Jen Hau
    贡献者: 廖瑞銘
    Liao, Ruey Ming
    楊仁豪
    Yang, Jen Hau
    关键词: 決策
    風險選擇
    期望值
    中腦多巴胺系統
    神經毒素毀除
    大白鼠
    decision making
    risky choice
    expected value
    mesolimbic dopamine systems
    neurotoxic lesion
    rat
    日期: 2010
    上传时间: 2011-10-05 14:39:19 (UTC+8)
    摘要: 「風險決策」行為非常普遍的存在於吾人之日常生活中,而選項所帶來的風險和獎勵是吾人進行決策時的重要考量因素。風險選擇的適當與否,對於個體的生存扮演著相當重要的角色。在以往的文獻中,對於決策的行為歷程已有所關注及探討,但對於風險選擇行為的神經生理機制迄今未明。本研究藉由大白鼠於T字迷津中,選擇確定之低酬賞或高不確定性之高酬賞的行為表現,進行風險選擇行為的探討。本研究中以兩項主要實驗,探討風險選擇行為之神經行為機制。實驗1a中,確定之低酬賞端固定呈現1顆食物粒,而高不確定性之高酬賞端則同時操弄酬賞物機率(50%、25%及12.5%)以及酬賞物的量(2、4及8顆),以系統性地檢驗期望值(0.5、1和2)於此風險選擇行為中扮演的角色。行為結果顯示當風險較低時,大白鼠會選擇高不確定性之高酬賞端;而風險較高時,則轉為選擇確定之低酬賞端。實驗1b中,系統性地施打不同劑量之安非他命,探討多巴胺系統在此風險選擇行為中之機制。實驗結果顯示施打安非他命後,大白鼠表現出相對地追求風險之行為,亦即選擇高不確定之高酬賞端之比例顯著高於控制組。實驗2中,藉由毀除大腦特定部位(依核、背外側之紋狀體、眶前額皮質、內側之前額皮質),檢驗風險選擇行為之神經基礎。毀除後之結果顯示,僅有依核受到毀除之大白鼠表現出相對地趨避風險之選擇行為。綜合以上結果,本研究建立之風險選擇行為與多巴胺有關,而依核在此行為歷程中扮演重要的調節角色。
    Many decisions people make every day involve uncertainty where both risks and rewards associated with each option need to be considered. Behavioral performance associated to risk-based choice appears wildly over the lifespan, and the fitness of risky choice behavior plays an important role in individual survival. Despite a growing body of research has focused to investigate the neurobiology of decision making, little is known about the neurobehavioral mechanisms of risky choice behavior. Based on a pilot work, this study used a T-maze to study decision under a probability-based risk in the rat. The subject was assessed on making choice to obtain either a large reward associated with risk of non-reward “empty” or a small reward ensured for every entry. Two experiments were conducted in this project to investigate neurobehavioral mechanisms of probabilistic risky choice behavior. In Experiment 1a, probabilistic risky choice behavior was systemically assessed under three expected values (0.5, 1.0, and 2.0) by manipulating the probabilities of reward presence (50%, 25%, and 12.5%) and the reward magnitude (2, 4, or 8 pellets) in the probabilistic high reward (PHR) arm. Behavioral data showed that the subject chose the probabilistic high reward in a lower risk condition but would shift to the choice of certain low reward (CLR) as the risk is increased. In Experiment 1b, the dose effects of amphetamine on this probabilistic risky choice task was tested to verify whether the dopaminergic mechanism was involved. Amphetamine, presumably activating brain dopamine systems, produced a relatively risk-seeking effect on the present behavioral task. In Experiment 2, the excitoneurotoxic lesion was conducted in the nucleus accumbens, the dorsolateral striatum, the orbitofrontal cortex, and the medial prefrontal cortex to examine the neural substrates for this probabilistic risky choice behavior. The results showed that the lesion of the nucleus accumbens significantly produced a relatively risk-averse effect on the present behavioral task, as compared to the lesions made on the other three brain areas. In conclusion, the probabilistic risky choice behavior established in the present study is dopamine dependent. And, the nucleus accumbens plays a major role of mediating this behavioral processing.
    參考文獻: Adriani, W., Boyer, F., Gioiosa, L., Macri, S., Dreyer, J. L., & Laviola, G. (2009). Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience, 159, 47-58.
    Adriani, W., Boyer, F., Leo, D., Canese, R., Podo, F., Perrone-Capano, C., Dreyer, J. L., & Laviola, G. (2010). Social withdrawal and gambling-like profile after lentiviral manipulation of DAT expression in the rat accumbens. Neuropsychopharmacology, 13, 1329-1342.
    Ahlskog. J. E. (2011). Pathological behaviors provoked by dopamine agonist therapy of Parkinson`s disease. Physiology and Behavior, 104, 168-172.
    American Psychiatric Association. (2000). DSM-IV-TR. Diagnostic and statistical manual of mental disorders. (4th ed.) Text revision. American Psychiatric Association. Washington, DC.
    Anselme, P. (2010). The uncertainty processing theory of motivation. Behavioural Brain Research, 208, 291-310.
    Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience, 27(31), 8161-8165.
    Bechara, A., Damasio, A. R., Damasio, H, & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.
    Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19(13), 5473–5481.
    Boksem, M. A. S., & Tops, M. (2008). Mental fatigue: costs and benefits. Brain Research Reviews, 59, 125-139.
    Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neuroscience, 6: 37.
    Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19, 1277-1301.
    Castane, A., Theobald, D. E. H., & Robbins, T. W. (2010). Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behavioral Brain Research, 210, 74-83.
    Cavedini, P., Gorini, A., & Bellodi, L. (2006). Understanding bsessive–compulsive disorder: focus on decision making. Neuropsychology Review, 16, 3-15.
    Chang, Y. H., & Liao, R. M. (2003). Differential effects of dopamine D1 and D2 receptor antagonists on conditioned orienting behavior in the rat. Chinese Journal of Physiology, 46(4), 159-168.
    Cousins, M. S., Atherton, A., Turner, L., & Salamone, J. D. (1996). Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behavioural Brain Research, 74, 189-197
    de Bruin. J. P. C., van Oyen. H. G. M., & van de Poll. N. (1983). Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behavioral Brain Research, 10, 209-232.
    Djamshidian, A., Cardoso, F., Grosset, D., Bowden-Jones, H., & Lees, A. J. (2011). Pathological gambling in Parkinson`s disease-a review of the literature. Movement Disorders: Official Journal of the Movement Disorder Society. DOI: 10.1002/mds.23821. [Epub ahead of print]
    Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898-1902.
    Floresco, S. B., & Whelan, J. M. (2009). Perturbations in different forms of cost/benefit decision making induced by repeated amphetamine exposure. Psychopharmacology, 205, 189-201.
    Ghods-Sharifi, S., St. Onge, J. R., & Floresco, S. B. (2009). Fundamental contribution by the basolateral amygdala to different forms of decision making. The Journal of Neuroscience, 29(16), 5251-5259.
    Glimcher, P. W., Camerer, C. F., Fehr, E., & Poldrack, R. A. (2009). Neuroeconomics: Decision Making and the Brain. Elsevier Inc.
    Hemptinne, C. D., Nozaradan, S., Duvivier, Q., Lefevre, P., & Missal, M. (2007). How do primates anticipate uncertain future events? The Journal of Neuroscience, 27(16), 4334-4341.
    Horvitz, J. C. (2009). Stimulus-response and response-outcome learning mechanisms in the striatum. Behavioural Brain Research, 199, 129-140.
    Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–292.
    Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of dopamine neurons. The Journal of Neuroscience, 28(31), 7837-7846.
    Lawrence, N. S., Jollant, F., O’Daly, O., Zelaya, F., & Phillips, M. L. (2009). Distinct roles of prefrontal cortical subregions in the Iowa Gambling Task. Cerebral Cortex, 19, 1134-1143.
    Lee, D., Rushworth, M. F. S., Walton, M. E., Watanabe, M., & Sakagami M. (2007). Functional specialization of the primate frontal cortex during decision making. The Journal of Neuroscience, 27(31), 8170-8173.
    Lin, W. L., Yang, J. H., Yen, N. S., & Liao, R. M. (2009). Risky choice behavior and stimulant drug. International Congress of Psychology at Berlin Germany.
    Mobini, S., Body, S., Ho, M. Y., Bradshaw, C. M., Szabadi, E., Deakin, J. F. W., & Anderson, I. M. (2002). Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 160, 290–298.
    Murray, E. A., O’Doherty, J. P., & Schoenbaum, G. (2007). What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. The Journal of Neuroscience, 27(31), 8166-8169.
    Niv, Y., Duff, M. O., & Dayan, P. (2005). Dopamine, uncertainty and TD learning. Behavioral and Brain Functions, 1:6.
    Niv, Y., Joel, D., & Dayan, P. (2006). A normative perspective on motivation. Trends in Cognitive Sciences, 10(8), 375-381.
    Pais-Vieira, M., Lima, D., & Galhardo, V. (2007). Orbitofrontal cortex lesions disrupt risk assessment in a novel serial decision-making task for rats. Neuroscience, 145, 225-231.
    Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th ed.). Acdemic Press, New York.
    Polezzi, D., Sartori, G., Rumiati, R., Vidotto, G., & Daum, I. (2010). Brain correlates of risky decision-making. NeuroImage 49, 1886–1894.
    Rolls, E. T., McCabe, C., & Redoute, J. (2008). Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cerebral Cortex, 18, 652-663.
    Salamone, J. D., Correa, M., Farrar, A. M. & Mingote, S. M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191, 461-482.
    Salamone, J. D., Correa , M., Farrar, A. M., Nunes, E. J., & Pardo, M. (2009). Dopamine, behavioral economics, and effort. Frontiers in Behavioral neuroscience, 3, 13.
    Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 21, 341-359.
    Simon, N. W., Gilbert, R. A. J., Mayse, J. F. D., Bizon, J. L., & Setlow, B. (2009). Balancing risk and reward: A rat model of risky decision-making. Neuropsychopharmacology, 34, 2208-2217.
    Schultz, W., Preuschoff, K., Camerer, C., Hsu, M., Fiorillo, C. D., Tobler, P. N., & Bossaerts, P. (2008). Explicit neural signals reflecting reward uncertainty. Philosophical Transactions of the Royal Society, 363, 3801-3811.
    Schultz, W. (2010). Dopamine signals for reward value and risk: basic and recent data. Behavioral and Brain Functions, 6:24.
    St. Onge, J. R., & Floresco, S. B. (2008). Dopaminergic Modulation of Risk Based Decision Making. Neuropsychopharmacology, 34, 681–697.
    St. Onge, J. R., & Floresco, S. B. (2009). Prefrontal cortical contribution to risk-based decision making. Cerebral Cortex, doi:10.1093/cercor/bhp250.
    Tobler, P. N., Christopoulos, G. I., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). Risk-dependent reward value signal in human prefrontal cortex. Proceedings of the National Academy of Sciences, 106, 7185-7190.
    Tobler, P. N., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology, 97, 1621-1632.
    Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 30, (4481), 453-458.
    van den Bos, R., Lasthuis, W., den Heijer, E., van der Harst, J., & Spruijt, B. (2006). Toward a rodent model of the Iowa gambling task. Behavior Research Methods, 38(3), 470-478.
    van den Bos, R., van der Harst, J., Jonkman, S., Schilders, M., & Spruijt, B. (2006). Rats assess costs and benefits according to an internal standard. Behavioural Brain Research, 171, 350-354.
    von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior. (2nd ed.) Princeton, NJ: Princeton University Press.
    Wallis, J. D. & Kennerley, S. W. (2010). Heterogeneous reward signals in prefrontal cortex. Current Opinions in Neurobiology, 20, 191-198.
    Walker, S. C., Robbins, T. W., & Roberts, A. C. (2009). Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cerebral Cortex, 19, 889-898.
    Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. (2003). Functional specialization within medial frontal cortex of the anterior cingulated for evaluating effort-related decisions. Journal of Neuroscience, 23, 6475-6479.
    Walton, M. E., Kennerley, S. W., Bannerman, D. M., Phillips, P. E. M., & Rushworth, M. F. S. (2006). Weighing up the benefits of work: Behavioral and neural analyses of effort-related decision making. Neural Networks, 19, 1302-1314.
    Winstanley, C. A., Theobald, D. E. H., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. The Journal of Neuroscience, 24, 4718-4722.
    Winstanley, C. A., Zeeb, F. D., Bedard, A., Fu, K., Lai, B., Steele, C., & Wang, A. C. (2010). Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task. Behavioural Brain Research, 210, 263-272.
    Yang, J. H., Lin, W. L., & Liao, R. M. (2007). An animal model of risky choice behavior. 46th conference of Taiwanese Psychological Association. (In Chinese)
    Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience, 19, 181-189.
    Zeeb, F. D., Robbins, T. W., & Winstanley, C. A. (2009). Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology, 34, 2329-2343.
    描述: 碩士
    國立政治大學
    心理學研究所
    97752001
    99
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0097752001
    数据类型: thesis
    显示于类别:[心理學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    200101.pdf1793KbAdobe PDF2789检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈