English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51021842      Online Users : 868
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/51200
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/51200


    Title: 以部分法修正地理加權迴歸
    A conditional modification to geographically weighted regression
    Authors: 梁穎誼
    Leong , Yin Yee
    Contributors: 余清祥
    梁穎誼
    Leong , Yin Yee
    Keywords: 地理加權迴歸
    廣義加法模型
    交叉驗證法
    Jacobi疊代法
    電腦模擬
    MAUP問題
    Geographically weighted regression
    Generalized additive model
    Cross validation
    Jacobi iteration
    Computer simulation
    Modifiable areal unit problem
    Date: 2010
    Issue Date: 2011-10-05 14:31:55 (UTC+8)
    Abstract: 在二十世紀九十年代,學者提出地理加權迴歸(Geographically Weighted Regression;簡稱GWR)。GWR是一個企圖解決空間非穩定性的方法。此方法最大的特性,是模型中的迴歸係數可以依空間的不同而改變,這也意味著不同的地理位置可以有不同的迴歸係數。在係數的估計上,每個觀察值都擁有一個固定環寬,而估計值可以由環寬範圍內的觀察值取得。然而,若變數之間的特性不同,固定環寬的設定可能會產生不可靠的估計值。
    為了解決這個問題,本文章提出CGWR(Conditional-based GWR)的方法嘗試修正估計值,允許各迴歸變數有不同的環寬。在估計的程序中,CGWR運用疊代法與交叉驗證法得出最終的估計值。本文驗證了CGWR的收斂性,也同時透過電腦模擬比較GWR, CGWR與local linear法(Wang and Mei, 2008)的表現。研究發現,當迴歸係數之間存有正相關時,CGWR比其他兩個方法來的優異。最後,本文使用CGWR分析台灣高齡老人失能資料,驗證CGWR的效果。
    Geographically weighted regression (GWR), first proposed in the 1990s, is a modelling technique used to deal with spatial non-stationarity. The main characteristic of GWR is that it allows regression coefficients to vary across space, and so the values of the parameters can vary depending on locations. The parameters for each location can be estimated by observations within a fixed range (or bandwidth). However, if the parameters differ considerably, the fixed bandwidth may produce unreliable or even unstable estimates.
    To deal with the estimation of greatly varying parameter values, we propose Conditional-based GWR (CGWR), where a different bandwidth is selected for each independent variable. The bandwidths for the independent variables are derived via an iteration algorithm using cross-validation. In addition to showing the convergence of the algorithm, we also use computer simulation to compare the proposed method with the basic GWR and a local linear method (Wang and Mei, 2008). We found that the CGWR outperforms the other two methods if the parameters are positively correlated. In addition, we use elderly disability data from Taiwan to demonstrate the proposed method.
    Reference: Bivand R, Danlin Y, 2010, R manual for package “spgwr”,
    http://cran.r-project.org/web/packages/spgwr/spgwr.pdf (2010/08/01)
    Bivand R, R. Brunstad R, 2005, Further Explorations of Interactions between Agricultural Policy and Regional Growth in Western Europe. Approaches to Nonstationarity in Spatial Econometrics,
    http://www.feweb.vu.nl/ersa2005/final_papers/671.pdf (2010/09/30)
    Brunsdon C, Fotheringham A S, Charlton M, 1998, “Geographically weighted regression: modelling spatial nonstationarity” The Statistician 47, 431 – 443
    Brunsdon C, Fotheringham A S, Charlton M, 1999, “Some notes on parametric significance tests for geographically weighted regression” Journal of Regional Science 39, 497 – 524
    Brunsdon C, Fotheringham A S, Charlton M, 2002, Geographically Weighted Regression: the analysis of spatially varying relationships (John Wiley & Sons)
    Cleveland W S, Grosse E, Shyu W M, 1991, “ Local regression models” Statistical Models in S (Chambers, J. M. and Hastie,T. J., eds), 309–376. (Wadsworth & Brooks, Pacific Grove.)
    Cressie N, 1993, Statistics for spatial data (John Wiley & Sons)
    Fan J Q, Zhang W Y, 2008, “ Statistical methods with varying coefficient models” Statistics and its interface 1, 179 – 195
    Farber S, Páez A, 2007, “A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations” Journal of Geographical Systems 9, 371 – 396
    Haining R, 2003, Spatial data analysis, Theory and practice (Cambridge University Press)
    Hastie T J, Tibshirani R J, 1990, Generalized additive models, (Chapman and Hall, London, New York)
    Hu Y W, Yue J C, 2002, “Spatial Analysis of Taiwan Elderly Disability” Technical Report, Department of Statistics, National Chengchi University, Taipei, Taiwan R.O.C.
    Leung Y, Mei C L, Zhang W X, 2000, “Statistical tests for spatial nonstationarity based on the geographically weighted regression model” Environment and Planning A 32, 9 – 32
    Manoranjan V S, Olmos G M, 1997, “A Two-Step Jacobi-Type Iterative Method” Computers Math. Application 34, 1, 1 – 9
    Shi H J, Zhang L J, Liu J G, 2006, “A new spatial-attribute weighting function for geographically weighted regression” Canadian Journal of Forest Research 36, 4 996 – 1005
    Wang N, Mei C L, Yan X D, 2008, “Local linear estimation of spatially varying coefficient models: an improvement on the geographically weighted regression technique” Environment and Planning A 40, 986 – 1005
    Wu C O, Chiang C T, 2000, “Kernel smoothing on varying coefficient models with longitudinal dependent variable” Statistica Sinica 10, 433 – 456
    Description: 碩士
    國立政治大學
    統計研究所
    96354009
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096354009
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    400901.pdf1277KbAdobe PDF21099View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback