Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/51199
|
Title: | 馬可夫鏈蒙地卡羅收斂的研究與貝氏漸進的表現 A study of mcmc convergence and performance evaluation of bayesian asymptotics |
Authors: | 許正宏 Hsu, Cheng Hung |
Contributors: | 翁久幸 Weng, Chiu Hsing 許正宏 Hsu, Cheng Hung |
Keywords: | Edgeworth 展開式 馬可夫鏈蒙地卡羅 個別後驗分配 Stein’s 等式 Edgeworth expansion Markov chain Monte Carlo marginal posterior distribution Stein`s identity |
Date: | 2010 |
Issue Date: | 2011-10-05 14:31:53 (UTC+8) |
Abstract: | 本論文主要討論貝氏漸近的比較,推導出參數的聯合後驗分配與利用圖形來診斷馬可夫鏈蒙地卡羅的收斂。Johnson (1970)利用泰勒展開式得到個別後驗分配的展開式,此展開式是根據概似函數與先驗分配。 Weng (2010b) 和 Weng and Hsu (2011) 利用 Stein’s 等式且由概似函數與先驗分配估計後驗動差;將這些後驗動差代入Edgeworth 展開式得到近似後驗分配,此近似分配的誤差可精確到大O的負3/2次方與Johnson’s 相同。另外Weng and Hsu (2011)發現Weng (2010b) 和Johnson (1970)的近似展開式各別項誤差到大O的負1次方不一致,由模擬結果得到Weng’s 在此項表現比Johnson’s 好。另外由Weng (2010b)得到一維參數 的Edgeworth 近似後驗分配延伸到二維參數的聯合後驗分配;並應用二維參數的聯合後驗分配於多階段資料。本論文我們提出利用圖形來診斷馬可夫鏈蒙地卡羅收斂的方法,並且應用一般化線性模型與混合常態模型做為模擬。
關鍵字: Edgeworth 展開式;馬可夫鏈蒙地卡羅;個別後驗分配;Stein’s 等式 Johnson (1970) obtained expansions for marginal posterior distributions through Taylor expansions. The expansion in Johnson (1970) is expressed in terms of the likelihood and the prior. Weng (2010b) and Weng and Hsu (2011) showed that by using Stein`s identity we can approximate the posterior moments in terms of the likelihood and the prior; then substituting these approximations into an Edgeworth series one can obtain an expansion which is correct to O(t{-3/2}), similar to Johnson`s. Weng and Hsu (2011) found that the O(t{-1}) terms in Weng (2010b) and Johnson (1970) do not agree and further compared these two expansions by simulation study. The simulations confirmed this finding and revealed that our O(t{-1}) term gives better performance than Johnson`s. In addition to the comparison of Bayesian asymptotics, we try to extend Weng (2010a)`s Edgeworth series for the distribution of a single parameter to the joint distribution of all parameters. Since the calculation is quite complicated, we only derive expansions for the two-parameter case and apply it to the experiment of multi-stage data. Markov Chain Monte Carlo (MCMC) is a popular method for making Bayesian inference. However, convergence of the chain is always an issue. Most of convergence diagnosis in the literature is based solely on the simulation output. In this dissertation, we proposed a graphical method for convergence diagnosis of the MCMC sequence. We used some generalized linear models and mixture normal models for simulation study. In summary, the goals of this dissertation are threefold: to compare some results in Bayesian asymptotics, to study the expansion for the joint distribution of the parameters and its applications, and to propose a method for convergence diagnosis of the MCMC sequence.
Key words: Edgeworth expansion; Markov Chain Monte Carlo; marginal posterior distribution; Stein`s identity. |
Reference: | Albert, J. H. and Chib, S. (1993), “Bayesian analysis of binary and polychotomous responsedata”, Journal of the American Statistical Association, 88, 669–679. Brooks, S. P. and Gelman, A. (1998), “General methods for monitoring convergence ofiterative simulations”, Journal of Computational and Graphical Statistics, 7, 434–455. Dellaportas, P. and Smith, A. F. M. (1993), “Bayesian inference for generalized linear andproportional hazards models via gibbs sampling”, Appl. Statist., 42, 443–460. Erdelyi, A. (1956), Asympotic Expansions, New York: Dover Publications. Finney, D. J. (1947), “The estimation from individual records of the relationship betweendose and quantal response”, Biometrika, 34, 320–334. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995), Bayesian data analysis,New York : Chapman and Hall.4. Gelman, A. and Rubin, D. B. (1992), “Inference form iterative simulation using multiplesequences”, Statistical Science, 7, 457–511. Geman, S. and Geman, D. (1984), “Stochastic relaxation, gibbs distributions and thebayesian restoration of images”, IEEE Trans. Pattn. Anal. Mach. Intel, 6, 721–741. Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1995), Markov Chain Monte Carloin Practice, London: Chapman and Hall. Gilks, W. R. and Wild, P. (1992), “Adaptive rejection sampling for gibbs sampling”, Appl.Statist., 41, 337–348. Glickman, Mark E. (1993), “Paired comparison models with time-varying parameters”,Ph.D. thesis, Department of Statistics, Harvard University. Hinde, J. (1982), Compound Poisson regression models, New York: Springer. Hurn, M. W., Barker, N. W., and Magath, T. D. (1945), “The determination of prothrombintime following the administration of dicumarol with specific reference to thromboplastin”,Med., 30, 432–447. Johnson, R. (1967), “An asymptotic expansion for posterior distributions”, Ann. Math.Statist., 38, 1899–1906. Johnson, R. (1970), “Asymptotic expansions associated with posterior distributions”, Ann. Math. Statist., 41, 851–864. Kutner, M. H., Nachtsheim, C. J., and Neter, J. (2004), Applied linear regression models,Boston: McGraw. Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “Winbugs – a Bayesian modelling framework: concepts structure and extensibility”, Statistics and Computing,10, 325–337. Martin, Andrew D., Quinn, Kevin M., and Park, Jong Hee (2010), “MCMCpack: Markov chain Monte Carlo (MCMC) Package”, R package version 2.10.0, URL http://CRAN.R-project.org/package=MCMCpack. McCullagh, P. and Nelder, J. A. (1989), Generalized linear models, New York : Chapman and Hall. Mendenhall, W. M., Parsons, J. T., Stringer, S. P., Cassissi, N. J., and Million, R. R.(1989), “T2 oral tongue carcinoma treated with radiotherapy: analysis of local control and complications”, Radiotherapy and Oncology, 16, 275–282. Minka, T. P. (2001), “A family of algorithms for approximate bayesian inference”, Department of Electrical Engineering and Computer Science, 1–75. Myers, R. H. (1990), Classical and Modern Regression with Applications, Boston: PWSKent. R Development Core Team (2010), “R: A language and environment for statistical computing”, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www.R-project.org. Tanner, M. A. (1993), Tools for Statistical Inference, New York: Springer. Tierney, L. and Kadane, J. B. (1986), “Accurate approximations for posterior moments and marginal densities”, Journal of the American Statistical Association, 81, 82–86. Weng, R. C. (2003), “On Stein’s identity for posterior normality”, Statistica Sinica, 13, 495–506. Weng, R. C. (2010a), “A Bayesian Edgeworth expansion by Stein’s Identity”, Bayesian Analysis, 5, 741–764. Weng, R. C. (2010b), “A note on posterior distributions”, in JSM Proceedings, Section on Bayesian Statistical Science, 2599–2608, Alexandria, VA: American Statistical Association. Weng, R. C. and Hsu, C.-H. (2011), “A study of expansions of posterior distributions”, Communications in Statistics - Theory and Methods. Weng, R. C. and Tsai, W.-C. (2008), “Asymptotic posterior normality for multiparameter problems”, Journal of Statistical Planning and Inference, 138, 4068–4080. Woodroofe, M. (1989), “Very weak expansions for sequentially designed experiments: linear models”, Ann. Statist., 17, 1087–1102. |
Description: | 博士 國立政治大學 統計研究所 93354504 99 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0093354504 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
35450401.pdf | 1325Kb | Adobe PDF2 | 957 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|