Reference: | 一、英文部分: Ajzen, I. & Fishbein , M. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley, Reading, MA. Ajzen, I. & Fishbein , M. (1980) Understanding attitudes and predicting social behavior, Prentice-Hall, Englewood Cliffs, NJ. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Springer, Verlag, New York. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. Bandura, A. (1977). Self-efficacy toward a unifying theory 0f behavioral change. Psychological Review, 84(2), 91-125. Bhatti, T. (2007). Exploring factors influencing the adoption of mobile commerce. Journal of Internet Banking and Commerce. 12(3), 128-141. Bosnjak, M., Overmeier, D. & Tuten, T. L. (2006). Predicting and explaining the propensity to bid in online auctions: A comparison of two action-theoretical model. Journal of Consumer Behaviour, 5(4), 102-116. Chen, J. V., Yen, D. C. & Chen, K. (2009). The acceptance and diffusion of the innovative smart phone use: A case study of a delivery service company in logistics. Information & Management, 46(4) 241-248. Chen, L. D. & Tan, J. (2004). Technology adaptation in E-commerce: Key determinants of virtual stores acceptance. European Management Journal, 22(1), 74-86. Chew, F., Grant, W. & Tote, R. (2004). Doctors on-line: Using diffusion of innovations theory to understanding internet use. Medical Informatics, 36(9), 645-650. Ciganek, A. P., Mao, E. & Srite, M. (2008). Organizational culture for knowledge management systems: A study of corporate users. International Journal of Knowledge Management, 4(1), 1-16. Ciou, J. S. Droge, C. & Hanvanich, S. (2002). Does customer knowledge affect how loyalty is formed? Journal of Service Research, 5(2), 113-124. Cynthia, K. Riemenschneider, C. K., Harrison, D. A. & Mykytyn , P. P. (2003). Understanding it adoption decisions in small business: Integrating current theories. Information & Management, 40(4), 269-285. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technologies, MIS Quarterly, 13(3), 319-314. Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions, and behavioral impacts. International Journal of Man Machine Studies, 38(3), 475-487. Davis, F. D., Bagozzi, R. & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. Fitch, J. L. & Ravlin, E. C. (2005). Willpower and perceived behavioral control: Influences on the intention-behavior relationship and post-behavior attributions. Social Behavior and Personality, 33(2), 105-124. Gardner, R. E. & Hausenblas, H. A. (2005). Exercise and diet determinants of overweight women participating in an exercise and diet program: A prospective examination of the theory of planned behavior. Women & Health, 42(4), 37-46. Gillenson, M. L., Chen, L. D. & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance perspective. Information & Management, 39(8), 705-719. He, D., Lu,Y. & Zhou, D. (2008). Empirical study of consumers’ purchase intentions in C2C electronic commerce. Tsinghua Science and Technology, 13(3), 287-292. Hewitt, B. (2009). Using hybrid technology acceptance model to explore how security measures affect the adoption of electronic health record systems. Americas Conference on Information Systems, 5th. Hu, P.J., Chau, P.Y.K. , Sheng, L. O.R. & Tam, Y. K. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91-112. Igbaria, M., Zinatelli, N., Cragg, P. & Cavaye, A. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21(3), 279-302. Jackson, J. D., Yi, M. Y., Park, J. S. & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward and integrative view. Information & Management, 43(3), 350-363. Jan, C. J. & Lee, M. C. (2009). Exploring consumers’ initial intention and continuance intention to use online auctions: An extension of the expectation-confirmation model. ICIM2009第二十屆國際資訊管理學術研討會. Jones, L. W., Guill, B., Keir, S. T. & Carter, K. (2007). Using the theory of planned behavior to understand the determinants of exercise intention in patients diagnosed with primary brain cancer. Psycho-Oncology, 16(3), 232-245. Jung, M. L. (2008). From health to E-health: Understanding citizens’ acceptance of online health care. Doctoral Thesis from Department of Business administration and Social Sciences Division of Industrial Marketing, E-commerce and Logistics. Khalifa, M. & Shen, K. N. (2008). Explaining the adoption of transactional B2C mobile commerce. Journal of Enterprise Information Management, 21(2), 110-124. Lee, M. C. (2008). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141 Legris, P., Ingham, J. & Collerette, P. (2003). Why do people use information technology ? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. Lin, H. F. (2006). Understanding behavioral intention to participate in virtual communities. CyberPsychology & Behavior, 9(5), 15-24. Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. Bosnjak, M., Obermeier, D. & Tuten, T. L. (2006). Predicting and explaining the propensity to bid in online auctions: A comparison of two action-theoretical model. Journal of Consumer Behaviour, 5(2), 102-116 Moon, J., Park, J., Jung, G. H. & Choe, Y. C. (2010). The impact of IT use on migration intentions in rural communities. Technological Forecasting and Social Change. Moore, G. C. & Benbasat (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. Nijhof, N., Hoeven, C. L. & Jong, M. D. T. (2008). Determinants of use of a diabetes risk-screening test. Community Health, 33(8), 313-317. Pavlou, P. A. & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption : An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143. Pelling, E. L., Sc., B. B. & White, K. M. (2009). The theory of planned behavior applied to young people’s use of social networking web sites. CyberPsychology & Behavior, 12(6), 135-142. Quaddus, M., Xu, J. & Hoque, Z. (2005). Factors of adoption on online auction : A china study. ICEC. Robert, W. Fisher, S. (2004). Diffusion of innovation theory for clinical change. MJA, 180(2), 55-57. Rogers, E. M. (1995). Diffusion of innovations. The Free Press, New York. Schomerus, G., Matschinger, H. & Angermeyers , M. C. (2009). Attitudes that determine willingness to seek psychiatric help for depression: A representative population survey applying the theory of planned behaviour. Psychological Medicine, 39(11), 1855-1865. Seiders, K., Voss, G. B., Grewal, D. & Godfrey, A. L. (2005). Do satisfied customers buy more? Examining moderating influences in a retailing context. Journal of Marketing, 69(4), 26-43 Slyke, V., Ilie P., Lou & Stafford, J. (2007). Perceived critical mass and the adoption of a communication technology. European Journal of Information Systems, 16(3), 270-283. Taylor, S. & Todd, P. (1992). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. Taylor, S. & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570. Tung, F. C. & Chang, S. C. (2008). Nursing students’ behavioral intention to use online courses: A questionnaire survey. International Journal of Nursing Studies, 45(18), 1299-1309. Tung, F. C., Chang, S. C. & Chou, C. M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International Journal of Medical Informatics, 77(5), 324-335. Tung, Lee & Chen (2009). An extension of financial cost and TAM model with IDT for exploring users’ behavioral intentions to use the CRM information system. Society for Personality Research, 37(5), 621-626. Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Sciences, 46(2), 186-204. Venkatesh, V. & Morris, M. G. (2000). Why do not men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behaviors. MIS Quarterly, 24(1), 115-139. Venkatesh, V. & Morris, M. G., Davis, G.B. & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. Wu, I. L. &Wu, K. W. (2005). A hybrid technology acceptance approach for exploring E-CRM adoption in organizations. Behaviour & Information Technology, 24(4), 303-316. Wu, J. H., Shen, W. S., Lin, L. M., Greenes, R. & Bates, D. W. (2008). Testing the technology acceptance model for evaluating healthcare professionals’ intention to use and adverse event reporting system. International Journal for Quality in Health Care, 20(2), 123-129. Wu, J. H., Wang, S. C. & Lin, L. M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1) 66-77. Yoo, E. Y., Robbins, L. S. (2007). Understanding middle-aged women’s health information seeking on the web: A theoretical approach. Journal of the American Society for Information Science and Technology, 59(4), 577-590. Zhang, S., Zhao, J. & Tan, W. (2008). Extending TAM for online learning systems: An intrinsic motivation perspective. Tsinghua Science and Technology, 13(3), 312-317. 二、中文部分: 吳明隆 (2007). SPSS操作與應用:問卷統計分析實務, 臺北;五南出版社 邱皓政 (2006). 結構方程模式,臺北:雙葉書廊有限公司. |