Reference: | [1] P. Viola and M. Jones, “Robust Real-Time Object Detection”. Proc. ICCV Second Int`l Workshop Statistical and Computational Theories of Vision Modelling, Learning, Computing, and Sampling, July 2001. [2] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection”, Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR `05), vol. 1, pp. 886-893, 2005. [3] R.Plamondon and S.N. Srihari, “On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey”. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 63-84, Jan. 2000 [4] Google goggles www.google.com/mobile/goggles [5] VOC 2009 Challenge Results: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/results/index.html [6] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int`l J. Computer Vision, vol. 2, no. 60, pp. 91-110, 2004. [7] B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada ,“Color and texture descriptors,” IEEE Trans. Circuit Syst. Video Technol., vol. 11, pp. 703–715, June 2001 [8] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, July 2002. [9] Pontil and A. Verri, “Support Vector Machines for 3D Object Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20(6), pp. 637-646, 1998. [10] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proc. Very Large Data Base Conf. (VLDB `99), pp. 518–529, Sept. 1999. [11] T. Maenpaa, and M. Pictikainen, “Multi-scale binary patterns for texture analysis,” Springer Berlin / Heidelberg, 2003. [12] C. He, T. Ahonen and M. Pietikäinen, “A Bayesian Local Binary Pattern texture descriptor”,Proc. Intl Conf. on Pattern Recognition, 2008. [13] X. Tan and B. Triggs. “Enhanced local texture feature sets for face recognition under difficult lighting conditions”. In Analysis and Modeling of Faces and Gestures, volume 4778 of LNCS, pages 168–182. Springer, 2007 [14] Matthias Hein and Ulrike von Luxburg ,“Short Introduction to Spectral Clustering”, MLSS 2007 [15] Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In T. Dietterich,S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 849 –856). MIT Press. [16] Brodatz database http://www.ux.uis.no/~tranden/ [17] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application to Face Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.2037-2041, Dec. 2006. [18] The Yale Face Database B http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html [19] G. Zhao and M. Pietik¨ainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. PAMI, 29(6):915–928, 2007. [20] G.Zhao and M. Pietikäinen, “Dynamic Texture Recognition Using Volume Local Binary Patterns”, Proc. ECCV 2006 Workshop on Dynamical Vision, Graz, Austria, 2006, accepted. [21] M. Heikkil¨a, M. Pietik¨ainen, and C. Schmid, “Description of interest regions with center-symmetric local binary patterns”,In Computer Vision, Graphics and Image Processing, 5th Indian Conference, pages 58–69, 2006. |