English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114504/145531 (79%)
Visitors : 53506361      Online Users : 1125
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/49451
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49451


    Title: 不盡相異物的環狀排列公式
    A Formula on Circular Permutation of Nondistinct Objects
    Authors: 王世勛
    Wang,shyh shiun
    Contributors: 李陽明
    Li,young ming
    王世勛
    Wang,shyh shiun
    Keywords: 環狀排列
    不盡相異物
    circular permutation
    nondistinct objects
    indistinguishable objects
    Date: 2009
    Issue Date: 2010-12-08 11:44:57 (UTC+8)
    Abstract: n個物品之直線排列數與環狀排列數有對應關係,一般而言,具有K-循環節的直線排列之所有情形數若為 ,則 即為所對應的環狀排列數,亦即每K種直線排列對應到同一種環狀排列。本文將直線排列之所有情形依所具有的K-循環節之類別做分割,並導出具有K-循環節之直線排列之所有情形數之計數公式,假設直線排列依 -循環節, -循環節, , -循環節分類依序有 種不同排列情形,則所有的環狀排列數 。
    There exists a correspondence between ordered arrangements and circular permutations. Generally speaking, suppose the number of ordered arrangements with K-recurring periods is S, then the number of circular permutations is , namely we may assigne each K cases of ordered arrangements with K-recurring periods to a case of circular permutations. This article partitions the total cases of ordered arrangements with indistinguishable objects by means of the different catagories of K-recurring periods and derives a formula to calculate the total number of ordered arrangements with K-recurring periods. Suppose the number of ordered arrangements with -recurring periods、 -recurring periods、 、 -recurring periods is respectively, then the total number of circular permutations is .
    Reference: [1]陳壽愷,民國63年(1974),論環狀排列與珠狀排列,科教圖書
    [2]陳明哲,民國48年(1959),排列組合,中央書局
    [3]王昌銳,民國61年(1972) ,組合論,百成書局
    [4]王奉民、陳定凱,民國77年(1988),離散數學導論,儒林書局
    [5]李雲、林文達,民國86年(1997) ,離散數學 ,儒林書局
    [6]張子浩,民國77年(1988) ,整合離散數學,文笙書局
    [7]許振忠,民國86年(1997) ,一些排列組合的演算法,政大應數所
    碩士論文
    Description: 碩士
    國立政治大學
    應用數學研究所
    94751004
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094751004
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100404.pdf236KbAdobe PDF21194View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback