Reference: | 英文部分 1. Akaike, H. (1973) “Information theory and an extension of the maximum likelihood principle.” Proc. 2nd International Symposium on Information Theory (Eds. B. N. Petrov and F. Csaki), 267-281, Akademiai Kiado, Budapest. 2. Akaike, H. (1974) “A new look at the statistical model identification.” IEEE Transactions on Automatic Control, AC-19, 716-723. 3. Akaike, H. (1978) “A Bayesian analysis of the minimum AIC procedure.” Ann. Inst. Statist. Math., 30A, 9-14. 4. Akaike, H. (1979) “A Bayesian analysis of the minimum AIC procedure of autoregressive model fitting.” Biometrika, 66, 237-242. 5. Bell, W.R. (1997) “Comparing and Assessing Time Series Methods for Forecasting Age-Specific Fertility and Mortality Rates.” Journal of Official Statistics, 13(3): 279-303. 6. Bozik, J.E. and W.R. Bell (1987) “Forecasting Age Specific Fertility Using Principal Components.” Proceeding of the American Statistical Association, Social Statistics Section, 396-401. 7. Cairns, A. J. G., D. Blake., and K. Dowd (2006) “A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration.” Journal of Risk and Insurance, 73: 687-718. 8. Cairns, A.J.G., D. Blake , K. Dowd, G.D. Coughlan, and M. Khalaf-Allah (2010) “Bayesian Stochastic Mortality Modelling for Two Populations.” Pension Institute Discussion Paper PI-1001. 9. Cairns, A. J.G., D. Blake, K. Dowd, G.D. Coughlan, D. Epstein, Ong, A., and I. Balevich (2007) “A quantitative comparison of stochastic mortality models using data from England and Wales and the United States.” Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences. 10. Continuous Mortality Investigation Report No.17 (1999) Institute of Actuaries and Faculty of Actuaries. 11. Currie, I.D. (2006) “Smoothing and Forecasting Mortality Rates with P-Splines.” Paper given at the Institute of Actuaries, June 2006. http://www.ma.hw.ac.uk/~iain/research/talks.html 12. Currie, I.D., M. Durban, and P.H.C. Eilers (2004) “Smoothing and Forecasting Mortality Rates.” Statistical Model, 4: 279-98. 13. Dowd, K., A.J.G. Cairns, D. Blake, G.D. Coughlan, D. Epstein, and M. Khalaf-Allah (2008a) “Backtesting Stochastic Mortality Models: An Ex-Post Evaluation of Multi-Period-Ahead Density Forecasts.” Working Paper. 14. Dowd, K., A.J.G. Cairns, D. Blake, G.D. Coughlan, D. Epstein, and M. Khalaf-Allah (2008b) “Evaluating the Goodness of Fit of Stochastic Mortality Models.” Working Paper. 15. Jarner, S.F., and E.M. Kryger (2009) “Modelling adult mortality in small populations: The SAINT model.” Pension Institute Discussion Paper PI-0902. 16. Lee, R.D., and L.R. Carter (1992) “Modeling and forecasting U.S. mortality”, Journal of the American Statistical Association, 87: 659-765. 17. Lewis, C.D. (1982) “Industrial and business forecasting methods : a practical guide to exponential smoothing and curve fitting.” London: Butterworth Scientific, 1982. 18. Li, N., and R. Lee (2005) “Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method.” Demography, 42(3): 575-594. 19. Mitra, S., and M.L. Levin (1997) “Model the reciprocal of the survivorship function.” Mathematical and Computer Modelling. 26(6): 57-68. 20. Njenga, C.N., and M. Sherris (2009) “Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility.” Working Paper. http://ssrn.com/abstract=1458084 . 21. Pedroza, C. (2006) “A Bayesian forecasting model: predicting U.S. male mortality.” Biostatistics, 7(4): 530-550. 22. Reichmuth, W. and S. Sarferaz (2008) “Bayesian demographic modeling and forecasting: An application to US mortality.” SFB 649 Discussion paper 2008-052. 23. Renshaw, A.E., and S. Haberman (2006) “A cohort-based extension to the Lee-Carter model for mortality reduction factors”, Insurance: Mathematics and Economics, 38: 556-570. 24. Schwartz, G. (1978) “Estimating the dimension of a model.” Ann. Statist., 6, 461-464. 25. Wei, William W. S. (1990) Time Series Analysis: Univariate and Multivariate Methods. (2nd ed.). Redwood City, CA: Addison-Wesley. 26. Yang, Sharon S., Jack C. Yue, Hong-Chih Huang (2010) “Modeling Longevity Risks using a Principal Component Approach: A Comparison with Existing Stochastic Mortality Models”, Insurance: Mathematics and Economics, 46: 254-270. 中文部分 1. 余清祥(1999)。修勻:統計在保險的應用。台北:雙葉書局。 2. 余清祥、曾奕翔(民94年3月)。Lee-Carter模型分析:台灣地區死亡率推估之研究。楊文山(主持人),二十一世紀的臺灣人口發展:趨勢與挑戰。2005年台灣人口學會學術研討會,國立台灣大學。 3. 陳順宇(2005)。多變量分析。四版。台北:華泰書局。 4. 陳文琴(民97)。死亡率改善模型的探討及保險商品自然避險策略之應用。國立政治大學風險管理與保險系研究所碩士論文。台北市。 |