政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/48969
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 51052221      線上人數 : 896
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/48969
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/48969


    題名: 波動自我復歸特性對股價指數選擇權評價重要嗎?
    Is Mean Reversion Feature of Volatility Important to Stock Index Option?
    作者: 湯亞蒨
    貢獻者: 杜化宇
    湯亞蒨
    關鍵詞: 台指選擇權
    條件波動度
    Regime-Switching
    Dispersion
    GRS-GARCH
    日期: 2009
    上傳時間: 2010-12-08 01:54:27 (UTC+8)
    摘要: 過去文獻在探究股市報酬率波動行為時,多採用GARCH/ARCH等傳統時間序列模型,但這些模型不能解決波動度的高持續性(persistence)。本文以Gray(1996)提出的一般化狀態轉換模型(GRS-GARCH)為基礎並加入Dueker(1997)所提出的Dispersion設定,建立GRS-GARCH-K以及GRS-GRACH-DF模型來預測股市報酬率波動行為。GRS-GARCH-K模型設定最大的優點是加入Student’s t分配之自由度可隨狀態轉換,使峰態亦可隨狀態轉換,另外GRS-GRACH-DF模型除了擁有GRS-GARCH-K的特性外,還擁有均數復歸的特色。本文以單一狀態下的GARCH-N、GARCH-t模型,以及雙狀態下的GRS-GARCH、GRS-GARCH-K以及GRS-GARCH-DF模型做研究,並以台灣股價加權股價指數為研究樣本,探討並預測股價日報酬率的波動度,最後將波動度代入Black-Scholes選擇權訂價模型,探討模型之其評價效果。
    研究顯示,在樣本內以AIC和SBC檢定法則下,GRS-GARCH-DF有最好的配適能力,樣本外的預測能力在MAE、MASE、MAPE三種誤差比較法下,GRS-GARCH-DF相較於GARCH-N、GARCH-t、GRS-GARCH和GRS-GARCH-K四種模型,在訂價方面與市場價格誤差最小,並以DM檢定法證實其統計上的顯著性。因此擁有均數復歸特色的GRS-GARCH-DF在波動度的估計上相較於其他模型來的優異。
    參考文獻: 一、 中文部分
    1. 鄭亦妏,“在Black-Scholes評價模型下台指選擇權最適波動估計方法之研究”, 淡江大學管理科學研究所碩士論文,民國九十一年。
    2. 黎明淵, “馬可夫轉換模型應用性與合用性探討”,國立政治大學國際貿易學系博士論文,民國八十九年。
    二、英文部分
    1. Akgiray, V., (1989) “Conditional Heteroskedasticity in Time Series of Stock Returns: Evidence and Forecasts”, Journal of Business, Vol.62, 55-80.
    2. Black, F., (1976) “The pricing of commodity contracts”, Journal of Financial Economics, Vol.3, 167-179.
    3. Black, F. and M. Scholes, (1973) “The pricing of options and corporate liabilities”, Journal of Political Economy, Vol.81, 637-659.
    4. Bollerslev, T. (1986) “Generalized Autoregressive Conditional Heteroscedasticity”, Journal of Econometrics, Vol. 31, 307-327.
    5. Bollerslev, T., (1987) “A Conditional Heteroscedastic Time Series Model for Speculative Prices and Rates of Return”, Review of Economics and Statistics, Vol. 69, 542-547.
    6. Bondarenko, O., (2003) “Why Are Put Options So Expensive?”, Working Paper.
    7. Cassuto, A. E., (1995) “Non-Normal Error Patterns : How to Handle Them”, The Journal of Business Forecasting : Methods and System,14, 15-16.
    8. Chu, Shin-Herng, and Steven Freund, (1996) “Volatiltiy Estimation for Stock Index Options: A GARCH Approach”, The Quarterly Review of Economics and Finance, Vol.36, 431-450.
    9. Day, T. E., and C. M. Lewis, (1998) “The Behavior of the Volatility implicit in the prices of stock index options”, Journal of Financial Economics, 103-122.
    10. Diebold, F. X., (1986) “Modeling the Persistence of Conditional Varaince: A Comment”, Journal of the Royal Statistical Society, B39, 1-38.
    11. Diebold, F. X. and R.S. Mariano, (1995) “Comparing Predictive accuracy”, Journal of Business and Economic Statistics, Vol.13, 253-263.
    12. Ding Zhuanxin, C.W.J. Granger, and R. Engle, (1993) “A Long Memory Property of Stock Market Returns and a New Model”, Journal of Empirical Finance, Vol.1, 83-106.
    13. Dueker, Michael J., (1997) “Markov Switching in GARCH Processes and Mean Reverting Stock Market Volatility”, Journal of Business and Economic Statistics, Vol. 15, 26-34.
    14. Duan, J. C., and H. Zhang,(2001) “Pricing Hang Seng Index Options around the Asian Financial Crisis-A GARCH Approach”, Journal of Banking and Finance, 1989-2014.
    15. Engle, R., (1982) “Autoregressive Conditional Heteroscedasticity with Estimates of Variance of UK Inflation”, Econometrica, Vol. 50, 987-1008.
    16. Engle, R. and T. Bollerslev, (1986) “Modeling the Persistence of Conditional Variance”, Econometric Reviews, Vol. 5, 1-50.
    17. Fama, E. F., (1965) “The Behavior of Stock Market Prices”, Journal of Business, Vol.38, 34-105.
    18. French, K. R., G. W. Schwert, R. F. Stambaugh, (1987) “Expected Stock Returns and Volatility”, Journal of Financial Economics, Vol.19, 3-29.
    19. Glosten Lawrence R., Ravi Jagannatha and David E. Runkle, (1993) “On the Relation between the Expected Value and the Volatility of Nominal Excess Return on Stocks”, Journal of Finance, Vol.48, No.5, 1779-1801.
    20. Goldfeld, S. M., and R. E. Quandt, (1973) “A Markov Model for Switching Regerssion”, Journal of Econometrics, Vol.1, 3-16.
    21. Gwilym, O. A., (2001) “Forecasting volatility for options pricing for the U.K. stock market”, Journal of Financial Management and Analysis, Vol.14, 55-62.
    22. Gray, S. F., (1996) “Modeling the conditional distribution of interest rates as a regime-switching process”, Journal of Financial Economics, Vol. 42, 27- 62.
    23. Hamilton, J. D. and R. Susmel, (1994) “Autoregressive Conditional Heteroskedasticity and Change in Regime”, Journal of Econometrics, Vol.64, 307-33.
    24. Hansen, B. E. (1996) “Erratum: the likelihood ratio test under non-standard conditions: testing the Markov switching model of GNP”, Journal of Applied Econometrics, Vol. 11, 195-198.
    25. Harvey D, Leybourne S, Newbold P. (1997) “Testing the equality of prediction mean squared errors”, International Journal of Forecasting,Vol.13, 282–291.
    26. Klaassen, F., (2002) “Improving GARCH Volatility Forecasts with Regime-. Switching GARCH”, Empirical Economics, Vol. 27, 363-394.
    27. Karadag, Mehmet Ali,(2008)“Analysis of Turkish Sock Market with Markov Regime Switching Volatility Models”, a thesis submitted to the graduate school of applied mathematics of the Middle East Technical University.
    28. Latane, H., and R. Rendleman, (1976) “Standard Deviation of Stock Price Ratios Implied in Option Prices”, Journal of Finance, Vol.31, 369-381.
    29. Mandelbrot, B., (1963) “The Variation of Certain Speculative Prices”, Journal of Business,Vol.36, 294-419.
    30. Marcucci, Juri, (2005) “Forecasting Stock Market Volatility with Regime-Switching GARCH Models”, Studies in Nonlinear Dynamics & Econometrics, Vol. 9, 1-53.
    31. Mikosch, T., and C. Starica, (2004) “Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects”, Review of Economics and Statistics, Vol.86, 378-390.
    32. Morgan, I.G., (1976) “Stock Prices and Heteroskedasticity”, The Journal of
    Business, Vol. 49, 496-508.
    33. Nelson, D. B., (1991) “Conditional Heteroskedasticity in Asset Returns: A New Approach”, Econometrica, Vol.59, 347-370.
    34. Pagan, A., (1996) “The Econometrics of Financial Markets”, Journal of Empirical Finance, Vol.3, 15-102.
    35. Quandt, R. E., (1972) “A New Approach to Estimating Switching Regressions”, Journal of American Statistical Association,Vol.67, 306-310.
    描述: 碩士
    國立政治大學
    財務管理研究所
    97357025
    98
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0097357025
    資料類型: thesis
    顯示於類別:[財務管理學系] 學位論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋