English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51961071      Online Users : 688
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/47679


    Title: The Interaction of Natural Science Models in Spatial Interaction Behavior
    Other Titles: 自然科學模型在空間交互行為分析之應用
    Authors: 陳心蘋
    Chen,Hsin-Ping
    Contributors: 經濟系
    Date: 1999-12
    Issue Date: 2010-10-26 15:45:49 (UTC+8)
    Abstract: 本文簡要系統地介紹區域科學裏空間交互行為分析中常被應用的自然科學模型之間縱向與橫向的相互關係。包括靜態的熱力學之Entropy概念與重力定理,以及動態的生態基礎成長模型、logit模型和空間競爭模型間的相關性與在區域科學上的應用。最後並探討前述動態模型中之混沌特性與非線性之相關。
    This paper serves three purposes. First it gives a systematic review of interactions between some natural science concepts and regional sciencephenomena in both static and dynamic states. Second it aims to understand whynon-linear feature is crucial in the emergence of chaotic behavior. What roledoes "non-linear" play in a chaotic dynamic system? And finally simulatingthe non-linear dynamic system to observe its features. This review shows thatmaximum entropy concept can be applied in the spatial interaction model andresult in a gravity type model; based on this gravity model a logit discretechoice model is followed; consequently a dynamic logit model will generate alogistic type growth model. It shows that these biological or physical basedmodels are correlated and correspond to regional phenomena. From optimalentropy to generated dynamic logit model they are vertically related.Horizontally each natural science model interprets certain regional sciencephenomenon. Simulation results show that non-linear dynamic system is not onlyable to perform all regular trajectories of linear dynamic system but alsoperform non-periodic irregular motion patterns given different initialconditions. The chaotic systems do not cause different irregular trajectoriesgiven the same initial conditions and parameter values. The "stochastic" termin describing chaotic behavior refers to its unpredictable and random timeseries path. Also non-periodic evolution is extremely sensitive depending onthe initial conditions. Non-linear is the necessary condition for theemergence of chaos; the level of parameter value is the sufficient conditionfor chaotic dynamic system.
    Relation: 國立政治大學學報,79,99-129
    Data Type: article
    Appears in Collections:[經濟學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    3453.pdf1780KbAdobe PDF2404View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback