政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/3986
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51199507      Online Users : 911
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/3986


    Title: 資料特性對類神經網路預測效果影響之研究
    Other Titles: A Study on the Effect of Data Characteristics on the Prediction Performance of Artificial Neural Networks
    Authors: 陳春龍
    Keywords: 迴歸分析;類神經網路;區域搜尋法;演化策略法類神經網路
    Regression Analysis,Artificial Neural Networks,Local Search Methods,Evolution strategies neural network
    Date: 2001
    Issue Date: 2007-04-18 16:40:14 (UTC+8)
    Publisher: 臺北市:國立政治大學資訊管理學系
    Abstract: 迴歸分析與類神經網路是預測的兩種主要技術。過去幾年來已有超過50 篇以上的論文比較兩者在不同領域之應用及其預測效果。大部分的研究皆認為類神經網路的效果較佳,但是完整的比較則尚缺乏。 本論文嘗試在線性迴歸模式及非線性迴歸模式的條件下,隨機產生不同特性的資料以完整探討資料特性對迴歸分析與類神經網路之預測效果的影響。這些特性包括常態分配、偏態分配、非均等變異、 Michaelis-Menten 關係模式及指數迴歸模式。再者,我們使用區域搜尋法(Local Search ) 中的演化策略法(Evolution strategies,ES) 來當作類神經網路的學 習(Learning)方法以提高其預測功能。我們稱這種類型的類神經網路為ESNN。研究結果顯示資料特性確實會影響迴歸分析與類神經網路的預測效果。本研究歸納出一些規則以幫助使用者在面對資料時可以選擇適當的預測方法。此外,結果顯示ES 確實可提高類神經網路的預測效果。
    Regression analysis and artificial neural networks are two main techniques for prediction. During the past few years, more than fifty technical papers have been published for comparing the predictive performance of their applications in different areas. Most of these research concluded that artificial neural networks outperformed regression analysis; however, a more thorough comparison was lacking. In this research, we tried to randomly generate different types of data, so as to completely explore the effect of data characteristics on the predictive performance of regression analysis and artificial neural networks. The data characteristics include normal distribution, skew distribution, unequal variances, Michaelis-Menten relationship model and exponential regression model. In addition, we used the evolution strategies, one of the local search methods, to train artificial neural networks to further improve its performance. We named this type of artificial neural networks ESNN. Computational results indicate that data characteristics indeed affect the predictive performance of regression analysis and artificial neural networks. Several rules have been summarized to help user select suitable predictive methods for different types of data. The results also show that ES is able to enhance the predictive performance of artificial neural networks.
    Description: 核定金額:554000元
    Data Type: report
    Appears in Collections:[Department of MIS] NSC Projects

    Files in This Item:

    File Description SizeFormat
    902416H004037.pdf162KbAdobe PDF21013View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback