English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51838269      Online Users : 141
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/39799
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/39799


    Title: An Efficient Algorithm for Mining Frequent Itemsets over the Entire History of Data Streams
    Authors: 沈錳坤
    Contributors: 國立政治大學資訊科學系
    Keywords: Mining;Frequent Itemsets;History of Data Streams
    Date: 2004-09
    Issue Date: 2010-05-27 16:50:45 (UTC+8)
    Abstract: A data stream is a continuous, huge, fast changing, rapid, infinite sequence of data elements. The nature of streaming data makes it essential to use online algorithms which require only one scan over the data for knowledge discovery. In this paper, we propose a new single-pass algorithm, called DSM- FI (Data Stream Mining for Frequent Itemsets), to mine all frequent itemsets over the entire history of data streams. DSM-FI has three major features, namely single streaming data scan for counting itemsets` frequency information, extended prefix-tree-based compact pattern representation, and top-down frequent itemset discovery scheme. Our performance study shows that DSM-FI outperforms the well-known algorithm Lossy Counting in the same streaming environment.
    Relation: First International Workshop on Knowledge Discovery in Data Streams, in conjunction with the European Conference on Machine Learning (ECML) and the European Conference on the Principals and Practice of Knowledge Discovery in Dataabse (PKDD)
    Data Type: conference
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    Efficient.pdf226KbAdobe PDF2673View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback