Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/37333
|
Title: | 利用GPS觀測量構建台灣南部地區網格式電離層模型 A Study on Grid-Based Ionosphere Modeling of Southern Taiwan Region Using GPS Measurements |
Authors: | 吳相忠 Wu,Shiang Chung |
Contributors: | 林老生 Lin,Lao Sheng 吳相忠 Wu,Shiang Chung |
Keywords: | 電離層延遲 全電子含量 L1/L2差分延遲 相位水準演算法 薄殼模型 電離層穿透點 網格式演算法 Ionospheric Delay Total Electron Content L1/L2 differential delay Phase Leveling Algorithm Thin-Shell Model Ionospheric Pierce Point Grid-Based Algorithm |
Date: | 2003 |
Issue Date: | 2009-09-19 13:12:08 (UTC+8) |
Abstract: | 電離層延遲為精密GPS定位及導航的主要誤差來源之一,為了減弱電離層延遲對GPS定位及導航的影響,可以利用雙頻GPS觀測量構建即時的區域電離層模型,以提供即時的電離層延遲誤差改正參數,修正因電離層延遲效應造成的定位及導航誤差。 本研究以台灣地區雙頻GPS觀測量,採用相位水準技術估算全電子含量(TEC)、修正的單站演算法估計各GPS衛星及接收儀之L1/L2差分延遲及以UNSW網格式演算法構建區域的電離層模型。並進而求得適合台灣南部地區網格式電離層模型之較佳網格大小及探討使用那些內政部衛星追蹤站的觀測資料,便可有效建立台灣地區的電離層模型。 The ionospheric delay is one of the main sources of error in precise GPS positioning and navigation. The magnitude of the ionospheric delay is related to the Total Electron Content (TEC) along the radio wave path from a GPS satellite to the ground receiver. The TEC is a function of many variables, including long and short term changes in solar ionising flux, magnetic activity, season of the year, time of day, user location and viewing direction. A dual-frequency GPS receiver can eliminate (to the first order) the ionospheric delay through a linear combination of L1 and L2 observables. However, the majority of civilians use low-cost single-frequency GPS receivers that cannot use this option. Consequently, it is beneficial to estimate ionospheric delays over the region of interest, in real-time, in support of single-frequency GPS positioning and navigation applications.
In order to improve real-time regional ionosphere modelling performance, a grid-based algorithm is proposed. Data from the southern Taiwan region GPS network were used to test the ionosphere modelling algorithms. From the test results described here, it is shown that the performance of real-time regional ionosphere modelling is improved significantly when the proposed algorithm is used. |
Reference: | 中文部分 何慶雄、翁錦堂、楊聿銘、余騰鐸、黃謝文、黃懷德,「廣域增強系統(WAAS)在台灣的初步測試」,第五屆GPS衛星科技研討會,民國九十一年。 李振燾,「構建與評估電離層遲延模式以增益GPS高度之精度」,行政院國家科學委員會專題研究計畫成果報告 No.NSC84_2211_E014_002,民國八十四年。 李振濤、陳春盛,以適應修整法建立區域性GPS電離層遲延模式之研究,「測量工程」第四十一卷第四期,民國八十八年,第47頁-第61頁。 吳相忠、林老生,「估計衛星追蹤站之GPS接收機儀器偏差之研究」,第五屆GPS衛星科技研討會,民國九十一年。 林老生,提高GPS即時估計電離層延遲精度之研究,「測量工程」第四十卷第一期,民國八十七年,第25頁–第46頁。 林老生、Chris Rizos,利用GPS觀測量構建即時的區域電離層模型之研究,「測量工程」第四十一卷第一期,民國八十八年,第5頁–第32頁。 林老生,「估計GPS接收機L1/L2儀器偏差」,第二十一屆測量學術及應用研討會,民國九十一年。 林修國,「用GPS雙頻P電碼及載波相位研究電離層與衛星定位」,碩士論文,國立中央大學太空科學研究所,民國八十一年。 曾清涼、儲慶美,「GPS衛星測量原理與應用」二版,台南:國立成功大學衛星資訊研究中心,民國八十八年。 曾清涼、劉正彥,「電離層全電子含量對全球定位系統精準度的影響」,行政院國家科學委員會專題研究計畫成果報告No. NSC 89-2211-E-006-041,民國八十九年。 黃建華,「運用GPS觀測量構建台灣北部地區電離層遲延效應修正模式」,碩士論文,國立交通大學土木工程學系,民國八十五年。 張東和、曹沖、甄衛民,GPS接收機測量電離層TEC的數據處理方法,「電波科學學報」第十卷第三期,民國八十四年,第84頁-第87頁。 張孟陽、呂保維、宋文淼,單頻GPS導航定位中的電離層延遲改正方法,「電波科學學報」第十二卷第三期,民國八十六年,第254頁-第259頁。 蔡和芳,「全球定位系統觀測電離層全電子含量」,碩士論文,國立中央大學太空科學研究所,民國八十四年。 英文部分 Bishop G.J, Coco D.S., & Coker C., 1991. Variations in ionospheric range error with GPS look direction, Proceedings of ION GPS-91, September 11-13, Albuquerque, New Mexico, pp.1045-1054. Bishop G.J, Coco D.S., Coker C., Fremouv E.J., Secan J.A., Greenspan R.L. & Eyring D.O. (1992), GPS application to global ionospheric monitoring: requirements for a ground-based system, Proceedings of ION GPS-92, Fifth International Technical Meeting of The Satellite Division of The Institute of Navigation, September 16-18, Albuquerque, New Mexico, pp.339-353. Coco D. (1991), GPS - Satellites of opportunity for ionospheric monitoring. GPS World, October, pp.47-50. Coco D.S., Coker C., Dahlke S.R. & Clynch J.R. (1991), Variability of GPS satellite differential group delay biases, IEEE Transaction on Aerospace and Electrical Systems, Vol. 27, No. 6, pp.931-938. Conker, R.S., El-Arini, M.B., Albertson, T.W., Klobuchar, J.A. & Doherty, P.H. (1995): Development of real-time algorithms to estimate the ionosphere error bounds for WAAS. Proceedings of ION GPS-95, Eighth International Technical Meeting of The Satellite Division of The Institute of Navigation, Palm Springs, California, 12-15 September, 1247-1258. El-Arini, M.B., Conker, R.S., Albertson, T.W., Reagon, J.K., Klobuchar, J.A. & Doherty, P. H. (1995): Comparison of real-time ionospheric algorithms for a GPS Wide-Area Augmentation System (WAAS). NAVIGATION: Journal of the Institute of Navigation, Vol. 41, No. 4, 393-413. Federal Aviation Administration (FAA) (1994): Wide Area Augmentation System (WAAS) specification. Attachment B, U.S. Department of Transportation. FAA-E-2892, 9 May. Feltens J., Dow J.M., Martin-Mur T.J., Martinez C.G. & Bayoona-P’erez M.A. (1996), Verification of ESOC ionosphere modeling and status of IGS intercomparison activity. Presented at the IGS Analysis Center Workshop, Silver Springs, MD, USA, March 19-21, pp.205-219. Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. (1994), Global Positioning System: Theory and Practice, Third Edition, Springer-Verlag Wien, New York, 355pp. Klobuchar J.A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Transaction on Aerospace and Electronic Systems, Vol. AES-23, No.3, May, pp.321-331. Klobuchar J.A., Basu S. & Doherty P. (1993), Potential limitations in making absolute ionospheric measurements using dual frequency radio waves from GPS satellites, Proceedings of Ionospheric Effects Symposium, IES-93, May, pp.187-194. Klobuchar J.A. (1996), Ionospheric effects on GPS. In Global Positioning System: Theory and Applications (Edited by Parkinson & Spilker), Vol. 1, American Institute of Aeronautics and Astronautics, Inc., pp.485-515. Komjathy A. & Langley R.B. (1996), The effect of shell height on high precision ionospheric modeling using GPS, Presented at the IGS Analysis Center Workshop, Silver Springs, MD, March 19-21, pp.193-203. Lanyi, G.E. & Roth, T. (1988): A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellite observations. Radio Science, Vol. 23, No. 4, 483-492. Lin, L.S. (1998), Real-time estimation of ionospheric delays using GPS measurements, UNISURV S-51, Reports from School of Geomatic Engineering, The University of New South Wales, Sydney, Australia, 218pp. Mannucci A.J., Wilson B.D. & Edwards C.D. (1993), A new method for monitoring the earth ionospheric total electron content using the GPS global network, Proceedings of ION GPS-93, Sixth International Technical Meeting of The Satellite Division of The Institute of Navigation, September 22-24, Salt Lake City, Utah, pp.1323-1332. Seeber, G. (1993), Satellite Geodesy. Walter de Gruyter, Berlin, 531pp. Wanninger, L., 1994. Der Einfluss der Ionosphare auf die Positionierung mit GPS, PhD thesis of University of Hannover, Germany, Nr. 201, 137pp. Wilson B. & Mannucci A. (1994), Extracting ionospheric measurements from GPS in the presence of Anti-Spoofing, Proceedings of ION GPS-94, Seventh International Technical Meeting of The Satellite Division of The Institute of Navigation, September 20-23, Salt Lake City, Utah, pp.1599-1608. Yinger, C., Feess, W., Esposti, R, Chasko, A., Wilson, B. & Wheaton, B. (1999), GPS satellite interfrequency biases, ION 55th Annual Meeting, pp. 347-354. |
Description: | 碩士 國立政治大學 地政研究所 89257022 92 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0089257022 |
Data Type: | thesis |
Appears in Collections: | [地政學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|