English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50986631      Online Users : 836
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/37096
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/37096


    Title: 最大係數熱帶多項式及其應用
    Largest-coefficient Tropical Polynomials and Their Applications
    Authors: 林如苹
    Contributors: 蔡炎龍
    林如苹
    Keywords: 熱帶幾何
    熱帶多項式
    最大係數熱帶多項式
    熱帶代數基本定理
    Date: 2008
    Issue Date: 2009-09-19 12:08:25 (UTC+8)
    Abstract: 熱帶幾何(tropical geometry)在近年來引起數學家的注意,因為它可以簡化許多數學難題。本篇論文主要在探討單變數熱帶多項式(single variable tropical polynomial)的因式分解。對於每個熱帶多項式,我們都可以定義其對應的最大係數熱帶多項式(largest-coefficient tropical polynomial ),而且此最大係數熱帶多項式可以因式分解為線性乘積。根據此結果,熱帶代數基本定理(Fundamental Theorem of Tropical Algebra)即成立。此外,可將單變數熱帶多項式因式分解的許多概念延伸至多變數的情形。
    Tropical geometry draw much attention recent years for it simplifies many difficult classical mathematics problems. The thesis mainly discuss factorization of single variable tropical polynomials. For every tropical polynomial, we define the corresponding largest-coefficient tropical polynomial. We show that each largest-coefficient tropical polynomial can be factorized into a product of linear terms. As a result, the Fundamental Theorem of Tropical Algebra holds. Furthermore, we observe that many notions of factorization of single variable tropical polynomial can be extended to multivariate cases.
    Reference: [1] Lucia Caporaso and Joe Harris. Counting plane curves of any genus. Inventiones Mathematicae, 131(2):345{392, 2 1998.
    [2] Andreas Gathmann. Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3{32, 2006.
    [3] Nathan Grigg and Nathan Manwaring. An elementary proof
    of the fundamental theorem of tropical algebra. Preprint at
    arXiv:math.CO/0701.2591, February 2008.
    [4] Nathan B. Grigg. Factorization of Tropical Polynomials in One and Several Variables. Honor`s thesis, Brigham Young University, June 2007.
    [5] Grigory Mikhalkin. Counting curves via lattice paths in polygons. C.R. Math. Acad. Sci. Paris, 336(8):629{634, 2003.
    [6] Grigory Mikhalkin. Enumerative tropical algebraic geometry in R2. J.Amer. Math. Soc., 18(2):313{377 (electronic), 2005.
    [7] Grigory Mikhalkin. Tropical geometry and its applications. In Interna-tional Congress of Mathematicians. Vol. II, pages 827{852. Eur. Math.
    Soc., Zurich, 2006.
    [8] Jurgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. Contemporary Mathematics, 377:289{317,2005.
    [9] David Speyer and Bernd Sturmfels. The tropical grassmannian. Ad-vances in Geometry, 4:389{411, 2004.
    [10] David Speyer and Bernd Sturmfels. Tropical mathematics. Preprint at arXiv:math.CO/0408099, 2004.
    Description: 碩士
    國立政治大學
    應用數學研究所
    95972002
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095972002
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200201.pdf111KbAdobe PDF2771View/Open
    200202.pdf117KbAdobe PDF2812View/Open
    200203.pdf67KbAdobe PDF2800View/Open
    200204.pdf70KbAdobe PDF2745View/Open
    200205.pdf85KbAdobe PDF2851View/Open
    200206.pdf93KbAdobe PDF2794View/Open
    200207.pdf266KbAdobe PDF21175View/Open
    200208.pdf69KbAdobe PDF2741View/Open
    200209.pdf80KbAdobe PDF2861View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback