English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 112871/143842 (78%)
Visitors : 49961913      Online Users : 635
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/37069
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/37069


    Title: 時間關聯的操作式制約行為之神經機制:以c-Fos免疫組織化學染色法為例
    Neural mechanisms of the operant conditioned behavior based on temporal contingency: by c-Fos immunohistochemistry
    Authors: 鍾居翰
    Chung, Chu Hang
    Contributors: 廖瑞銘
    Liao, Ruey Ming
    鍾居翰
    Chung, Chu Hang
    Keywords: 區辨性增強低頻反應作業
    行為抑制
    計時
    習得歷程
    differential reinforcement of low-rate responding task
    behavioral inhibition
    timing
    acquisition
    c-Fos
    Date: 2008
    Issue Date: 2009-09-19 11:54:33 (UTC+8)
    Abstract: 區辨性增強低頻反應作業 (differential reinforcement of low-rate responding task, DRL task) 為一與時間相關聯之操作式制約行為作業,該作業常用於計時行為、行為抑制功能、或抗焦慮與抗憂鬱症等藥物之行為藥理研究的探討。雖然DRL作業是一種實驗室常用的動物行為模式,但是對於上述行為或藥理機制的探討往往缺乏一致性的解釋,其中可能的原因為DRL作業的行為同時包含了計時與行為抑制的成份。針對上述問題,本研究將以DRL行為作業為研究主題,探討作業習得歷程之神經機制。首先根據DRL作業之行為內涵,將作業的習得分為行為抑制與計時先後表現的兩個階段;並依據過去的研究文獻整理出的八個與行為抑制和計時表現相關之大腦區塊,以c-Fos免疫組織化學染色法探討行為抑制和計時的神經機制。實驗結果發現受試於行為抑制的表現階段,其眶眼皮質、內側前額葉皮質、與海馬CA1區域的c-Fos表現量較高;而在計時行為的表現階段,除了和行為抑制有關的三個大腦區塊外,尚有前扣帶迴、紋狀體、與齒狀迴呈現c-Fos表現量增加的現象。綜合以上結果,DRL-10秒作業於學習初期所進行的行為抑制可能和前額葉皮質與海馬體的神經互動有關;而學習較末階段的計時表現,則可能需要前額葉皮質、紋狀體、與海馬等三處較多的次級區域的組織加入,形成神經網路的方式支援之。
    Differential reinforcement of low-rate responding (DRL) task was an operant conditioned behavior based on temporal contingency. This task has been widely used to investigate the behavioral components of timing and behavioral inhibition, which is frequently used for pharmacological screening of anxiolytic and antidepressant drugs. Despite of being widely used as an animal behavioral model in the laboratory, but the performance of the DRL task was varied and inconsistent when the drug test conducted. One way to encounter this problematic issue is to differentiate the distinct behavioral components of DRL task and correlate the involved neural substrates, which was the theme investigated in the present study. This study first characterized the acquisition process of the DRL-10 sec task into behavioral inhibition and the timing stages, and then assessed the c-Fos levels by immunohistochemistry in the eight brain areas that potentially involved in behavioral inhibition and the timing processes. Regarding the stage of behavioral inhibition, significant increases in c-Fos-positive neurons were observed in the orbitofrontal cortex (OFC), the medial prefrontal cortex (mPFC), and the hippocampal CA1 area. At the stage of the timing being acquired, c-Fos immunohistochemical activity was highly expressed in the anterior cingulated cortex (ACC), OFC, mPFC, the dorsolateral striatum (dlS), the dentate gyrus (DG), and the hippocampal CA1 area. Together, these results showed that the functioning dual paths between the hippocampus CA1 and the prefrontal cortex (OFC and mPFC) are critically essential for developing the appropriate performance via behavioral inhibition in the early-stage of the DRL task and with three other areas (ACC, dlS, and DG) being recruited, an anatomical circuitry connecting prefrontal/striatal/hippocampal structures were involved in the acquisition of interval timing toward the later establishment of the DRL behavior.
    Reference: 鄭瑞光(2000)。「大腦多巴胺系統在大鼠操作式制約行為中所扮演的腳色:以時間為主」。未發表之碩士論文,國立政治大學心理系。
    Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., & Reiss, A. I. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage, 16, 61-75.
    Bailey, C. H., & Kandel, E. R. (1993). Structural changes accompanying memory storage. Annual Review of Physiology, 55, 397-426.
    Baldwin, A. E., Sadeghian, K., Holahan, M. R., & Kelley, A. E. (2002). Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiology of Learning and Memory, 77, 44-62.
    Bannerman, D. M., Yee, B. K., Good, M. A., Heupel, M. J., Iversen, S. D., & Rawlins, J. N. (1999). Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behavioural Neuroscience, 113, 1170-1188.
    Bardo, M. T., Cain, M. E., & Bylica, K. E. (2006). Effect of amphetamine on response inhibition in rats showing high or low response to novelty. Pharmacology, Biochemistry and Behavior, 85, 98-104.
    Barnes, N. M., & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38, 1083-1152.
    Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7-15.
    Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdale and ventromedial prefrontal cortex to decicsion-making. Journal of Neuroscience, 19, 5473-5481.
    Berchara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215-225.
    Bertaina-Anglade, V., Tramu, G., & Destrade, C. (2000). Differential learning-stage dependent patterns of c-Fos protein expression in brain regions during the acquisition and memory consolidation of an operant task in mice. European Journal of Neuroscience, 12, 3803-3812.
    Bizot, J. C. (1998). Effects of various drugs including organophosphorus compounds (OPC) and therapeutic compounds against OPC on DRL responding. Pharmacology, Biochemistry and Behavior, 59, 1069-1080.
    Bizot, J. C., Le Bihan, C., Puech, A. J., & Thiebot, M. H. (1999). Serotonin and tolerance to delay of reward in rats. Psychopharmacology, 146, 400-412.
    Blokland, A. (1998). Reaction time responding in rats. Neuroscience & Biobehavioral Reviews, 22, 847-864.
    Blokland, A., Sik, A., & Lieben, C. (2005). Evaluation of DOI, 8-OH-DPAT, eticlopride and amphetamine on impulsive responding in a reaction time task in rats. Behavioural Pharmacology, 16, 93-100.
    Bohn, I., Giertler, C., & Haubert, W. (2003). Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Behavioural Brain Research, 143, 49-56.
    Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulated cortex. Nature, 402, 179-181.
    Brookes, S., Rawlins, J. N. P., Gray, J. A., & Feldon, J. (1983). DRL performance in rats with medial and lateral septal lesions. Physiological Psychology, 11, 178-184.
    Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6, 755-765.
    Bush, G.., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., Rosen, B. R., & Biederman, J. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop. Biological Psychiatry, 45, 1542-1552.
    Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19, 1277-1301.
    Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neuroscience, 6, 37.
    Cardinal, R. N., Pennicott, D. R., Sugathapala, C. L., Robbins, T. W., & Everitt, B. J. (2001). Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 2499-2501.
    Cardinal, R. N., Winstanley, C. A., Robbins, T. W., & Everitt, B. J. (2004). Limbic corticostriatal systems and delayed reinforcement. Annals New York Academy of Science, 1021, 33-50.
    Carli, M., & Samanin, R. (2000). The 5-HT1A receptor agonist 8-OH-DAT reduces rats" accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT1A receptors. Psychopharmacology, 149, 259-268.
    Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulated cortex, error detection, and the online monitoring of performance. Science, 280, 747-749.
    Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3, 617-628.
    Cheng, R. K., & Liao, R. M. (2007). Dopamine receptor antagonists reverse amphetamine-induced behavioral alteration on a differential reinforcement for low-rate (DRL) operant task in the rat. Chinese Journal of Physiology, 50, 77-88.
    Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacology, Biochemistry and Behavior, 85, 114-122.
    Cheng, R. K., MacDonald, C. J., Williams, C. L., & Meck, W. H. (2008). Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Leaning & Memory, 15, 153-162.
    Cheung, T. H., & Cardinal, R. N. (2005). Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neuroscience, 6, 36.
    Christakou, A., Robbins, T. W., & Everitt, B. J. (2004). Prefrontal-ventral struatal systems involved in affective modulation of attentional performance: Implications for corticostriatal circuitry function. Journal of Neuroscience, 24, 773-780.
    Church, R. M. (1997). Timing and temporal search. In: C. M. Bradshaw, & E. Szabadi. (Eds). Time and behavior: psychological and neurobehavioural analysis. Elsevier Science B. V.
    Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology: Animal Behavior Processes, 3, 216-228.
    Clayton, D. F. (1997). Role of gene regulation in song circuit development and song learning. Journal of Neurobiology, 33, 549-571.
    Clayton, D. F. (2000). The genomic action potential. Neurobiology of Learning and Memory, 74, 185-216.
    Compton, A. D., Slemmer, J. E., Drew, M. R., Hyman, J. M., Golden, K. M., Balster, R. L., & Wiley, J. L. (2001). Combinations of clozapine and phencyclidine: effects on drug discrimination and behavioral inhibition in rats. Neuropharmacology, 40, 289-297.
    Corbit, L. H., Muir, J. L., & Balleine, B. W. (2001). The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. Journal of Neuroscience, 21, 3251-3260.
    Costa, V. C. I., Bueno, J. L. O., & Xavier, G. F. (2005). Dentate gyrus-selective colchicine lesion and performance in temporal and spatial tasks. Behavioural Brain Research, 160, 286-303.
    Dalley, J. W., Theobald, D. E. H., Eagle, D. M., Passetti, F., & Robbins, T. W. (2002). Deficits in impulsive control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology, 26, 716-728.
    Damasio, A. R. (1994). Descartes" error. New York: Putman.
    Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: a review. Psychological Bulletin, 96, 518-559.
    Doughty, A. H., & Richards, J. B. (2002). Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pegions. Journal of the Experimental Analysis of Behavior, 78, 17-30.
    Ernst, M., Nelson, E. E., McClure, E. B., Monk, C. S., Munson, S., Eshel, N., Zarahn, E., Leibenluft, E., Zametkin, A., Towbin, K., Blair, J., Charney, D., & Pine, D. S. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia, 42, 1585-1597.
    Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146, 348-361.
    Evenden, J. L. & Ryan, C. N. (1996). The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology, 128, 161-170.
    Evenden, J. L. & Ryan, C. N. (1999). The pharmacology of impulsive behaviour in rats VI: the effects of ethanol and selective serotonergic drugs on response choice with varying delays of reinforcement. Psychopharmacology, 146, 413-421.
    Fleischmann, A., Hvalby, O., Jensen, V., Strekalova, T., Zacher, C., Layer, L. E., Kvello, A., Reschke, M., Spanagel, R., Sprengel, R., Wagner, E. F., & Gass, P. (2003). Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. Journal of Neuroscience, 23, 9116-9122.
    Fletcher, P. J. (1995). Effects of combined or separate 5, 7-dihydroxytryptamine lesions of the dorsal and median raphe nuclei on responding maintained by a DRL 20s schedule of food reinforcement. Brain Research, 675, 45-54.
    Frederick, D. L., & Allen, J. D. (1996). Effects of selective dopamine d1- and d2-agonists and antagonists on timing performance in rats. Pharmacology, Biochemistry and Behavior, 53, 759-764.
    Fuster, J. M. (2001). The prefrontal cortex-An update: time is of the essence. Neuron, 30, 319-333.
    Gibbon, J., & Church, R. M. (1984). Sources of variance in an information processing theory of timing. In H. L. Roitblat, T. G. Bever, & H. S. Terrace (Eds.), Animal Cognition. (pp. 465-488). Hillsdale, NJ: Erlbaum.
    Gibbon, J., Malapani, C., Dale, C. L., & Gallistel, C. R. (1997). Toward a neurobiology of temporal cognition: advances and challenges. Current Opinion in Neurobiology, 7, 170-184.
    Gilbert, P. E., & Kesner, R. P. (2002). The amygdale but not the hippocampus is involved in pattern separation based on reward value. Neurobiology of Learning and Memory, 77, 338-353.
    Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1. Hippocampus, 11, 626-636.
    Goldman-Rakic, P. S., Selemon, L. D., & Schwartz, M. L. (1984). Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12, 719-743.
    Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigral pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience, 20, 2369-2382.
    Haddon, J. E., & Killcross, S. (2007). Contextual control of choice performance: behavioral, neurobiological, and neurochemical influences. In B. W. Balleine, K. Doya, J. O"Doherty, & M. Sakagami (Eds.), Reward and decision making in corticobasal ganglia networks (pp. 250-269). Boston: Annals of the New York Academy of Science.
    Hadland, K. A., Rushworth, M. F. S., Gaffan, D., & Passingham, R. E. (2003). The anterior cingulate and reward-guided selection of actions. Journal of Neurophysiology, 89, 1161-1164.
    Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A., & Everitt, B. J. (2001). Involvement of the central nucleus of the amygdale and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. European Journal of Neuroscience, 13, 1984-1992.
    Hannesson, D. K., Vacca, G., Howland, J. G., & Phillips, A. G. (2004). Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behavioural Brain Research, 153, 273-285.
    Harrison, A. A., Everitt, B. J., & Robbins, T. W. (1997). Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: Interactions with dopaminergic mechanisms. Psychopharmacology, 133, 329-342.
    Harrison, A. A., Everitt, B. J., & Robbins, T. W. (1999). Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behavioural Brain Research, 100, 99-112.
    Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27, 555-579.
    Herdegen, T., & Leah, J. D. (1998). Inducibe and constitutive transcription factors on the mammalian nervous system: control of gene expression by Jun, Fos, and Krox, and CREB/ATF proteins. Brain Research Reviews, 28, 370-490.
    Hernandez, P. J., Sadeghian, K., & Kelley, A. E. (2002). Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nature Neuroscience, 5, 1327-1331.
    Herrera, D. G., & Robertson, H. A. (1996). Activation of c-fos in the brain. Progress in Neurobiology, 50, 83-107.
    Hess, U. S., Lynch, G., & Gall, C. M. (1995). Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. Journal of Neuroscience, 15, 7796-7809.
    Hesslinger, B., Tebartz van Elst, L., Thiel, T., Haegele, K., Hennig, J., & Ebert, D. (2002). Frontoorbital volume reductions in adult patients with attention deficit hyperactivity disorder. Neuroscience Letters, 328, 319-321.
    Higa, J. J., Moreno, S., & Sparkman, N. (2002). Interval timing in rats: tracking unsignaled changes in the fixed interval schedule requirement. Behavioural Processes, 58, 167-176.
    Higgins, G. A., Ballard, T. M., Huwyler, J., Kemp, J. A., & Gill, R. (2003). Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behavior: evidence for an involvement of NR2B NMDA receptors in response inhibition. Neuropharmacology, 44, 324-341.
    Hinton, S. C., & Meck, W. H. (2004). Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Research, 21, 171-182.
    Ho, M. Y., Mobini, S., Chiang, T. J., Bradshaw, C. M., & Szabadi, E. (1999). Theory and method in the quantitative analysis of “impulsive choice” behaviour: Implications for psychopharmacology. Psychopharmacology, 146, 362-372.
    Huerta, P., Sun, L. D., Wilson, M. A., & Tonegawa, S. (2000). Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 25, 473-480.
    Iverson, S. D., & Mishkin, M. (1970). Perseverative interference in monkey following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 376-386.
    Jackson, P. A., Kesner, R. P., & Amann, K. (1998). Memory for duration: role of hippocampus and medial prefrontal cortex. Neurobiology of Learning and Memory, 70, 328-348.
    Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373-390.
    Joel, D., Weiner, I., & Feldon, J. (1997). Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behavioural Brain Research, 85, 187-201.
    Johansson, A. K., & Hansen, S. (2000). Increased alcohol intake and behavioral disinhibition in rats with ventral striatal neuronal loss. Physiology and Behavior, 70, 453-463.
    Kaczmarek, L., & Chaudhuri, A. (1997). Sensory regulation of immediate early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Research Reviews, 23, 237-256.
    Kelley, A. E. (2004). Ventral striatal control of appetitve motivation: role in ingestive behavior and reward-related learning. Neuroscience & Biobehavioral Reviews, 27, 765-776.
    Kesner, R. P., & Holbrook, T. (1987). Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesions. Neuropsychologia, 25, 653-664.
    Kheramin, S., Body, S., Herrera, F. M., Bradshaw, C. M., Szabadi, E., Deakin, J. F. W., & Aderson, I. M. (2005). The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice. Behavioural Brain Research, 156, 145-152.
    Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A., & Greenough, W. T. (1996). Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. Journal of Neuroscience, 16, 4529-4535.
    Knowlton, B. J., Shapiro, M. L., & Olton, D. S. (1989). Hippocampal seizures disrupt working memory performance but not reference memory acquisition. Behavioral Neuroscience, 103, 1144-1147.
    Koskinen, T., Ruotsalainen, S., Puumala, T., Lappalainen, R., Koivisto, E., Mannisto, P. T., & Sirvio, J. (2000). Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology, 39, 471-481.
    Koskinen, T., Ruotsalainen, S., & Sirvio, J. (2000). The 5-HT(2) receptor activation enhances impulsive responding without increasing motor activity in rats. Pharmacology, Biochemistry and Behavior, 66, 729-738.
    Kraemer, P. J., Randall, C. K., Dose, J. M., & Brown, R. W. (1997). Impact of d-amphetamine on temporal estimation in pigeons tested with a production procedure. Pharmacology, Biochemistry and Behavior, 58, 323-327.
    Kramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A selective critique. Psychological Bulletin, 74, 225-254.
    Lee, I., Jerman, T. S., & Kesner, R. P. (2005). Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiology of Learning and Memory, 84, 138-147.
    Leung, H. C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An event-related functional MRI study of the stroop color word interference task. Cerebral Cortex, 10, 552-560.
    Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250-255.
    Liao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: Comparison with selective dopamine receptor antagonists. Chinese Journal of Physiology, 48, 41-50.
    Linnoila, M., Virkkunen, M., George, T., Higley, D. (1993). Impulse control disorders. International Clinical Psychopharmacology, 8, 53-56.
    Lustig, C., Matell, M. S., & Meck, W. H. (2005). Not “just” a coincidence: Frontal-striatal interactions in working memory and interval timing. Memory, 13, 441-448.
    Malapani, C., Deweer, B., & Gibbon, J. (2002). Separating storage from retrieval dysfunction of temporal memory in Parkinson"s disease. Journal of Cognitive Neuroscience, 14, 311-322.
    Malapani, C., Rakitin, B., Levy, R., Meck, W. H., Deweer, B., Dubois, B., & Gibbon, J. (1998). Journal of Cognitive Neuroscience, 10, 316-331.
    Maquet, P., Lejeune, H., Pouthas, V., Bonnet, M., Casini, L., Macar, F., Timsit-Berthier, M., Vidal, F., Ferrara, A., Degueldre, C., Quaglia, L., Delfiore, G., Luxen, A., Woods, R., Mazziotta, J. C., & Comar, D. (1996). Brain activation induced by estimation of duration: a PET study. NeuroImage, 3, 119-126.
    Maricq, A. V., & Church, R. M. (1983). The differential effects of haloperidol and methamphetamine in time estimation in the rat. Psychopharmacology, 79, 10-15.
    Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., & Peterson, B. S. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848-863.
    Matell, M. S., & Meck, W. H. (2000). Neuropsychological mechanisms of interval timing behavior. BioEssays, 22, 94-103.
    Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139-170.
    Matell, M. S., Meck, W. H., & Nicolelis, M. A. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience, 117, 760-773.
    Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301, 229-232.
    Matthies, H. (1989). In search of cellular mechanisms of memory. Progress in Neurobiology, 32, 277-394.
    McAuley, J. D., Miller, J. P., & Pang, K. C. H. (2006). Modeling the effects of the NMDA receptor antagonist MK-801 on timing in rats. Behavioral Neuroscience, 120, 1163-1168.
    McClure, G. Y. H., & McMillan, D. E. (1997). Effects of drugs on response duration differentiation. VI: Differential effects under differential reinforcement of low rates of responding schedules. Journal of Pharmacology and Experimental Therapeutics, 281, 1368-1380.
    McEchon, M. D., Bouwmeester, H., Tseng, W., Weiss, C., & Disterhoft, J. F. (1998). Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus, 8, 638-646.
    McEchon, M. D., & Disterhoft, J. F. (1997). Sequence of single neuron changes in CA1 hippocampus of rabbits during acquisition of trace eyeblink conditioned responses. Journal of Neurophysiology, 78, 1030-1044.
    Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227-242.
    Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58, 1-8.
    Meck, W. H. (2006). Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Research, 1108, 157-167.
    Meck, W. H. (2006). Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109, 93-107.
    Meck, W. H., & Benson, A. M. (2002). Dissecting the brain"s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain and Cognition, 48, 195-211.
    Meck, W. H., Church, R. M., & Olton, D. S. (1984). Hippocampus, time, and memory. Behavioral Neuroscience, 98, 3-22.
    Meck, W. H., Church, R. M., Wenk, G. L., & Olton, D. S. (1987). Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory. Journal of Neuroscience, 7, 3505-3511.
    Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J., Suomi, S. J., & Linnoila, M. (1994). Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. American Journal of Psychiatry, 151, 1485-1491.
    Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain and Cognition, 49, 277-296.
    Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
    Mitchell, J. B., & Laiacona, J. (1998). The medial frontal cortex and temporal memory: tests using spontaneous exploratory behavior in the rat. Behavioural Brain Research, 97, 107-113.
    Mobini, S., Body, S., Ho, M. Y., Bradshaw, C. M., Szabadi, E., Deakin, J. F., & Anderson, I. M. (2002). Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 160, 290-298.
    Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: functional interface between the limbic system and the motor system. Progress in Neurobiology, 14, 69-97.
    Monterosso, J., & Ainslie, G. (1999). Beyond discounting: possible experimental models of impulse control. Psychopharmacology, 146, 339-347.
    Morgan, J. L., & Curran, T. (1991). Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annual Review of Neuroscience, 14, 421-451.
    Nestler, E. J., Hyman, S. E., & Malenka, R. C. (2001). Molecular neuropharmacology: A foundation for clinical neuroscience. (International). U. S. A.: The McGraw-Hill Companies, Inc.
    Nigg, J. (1999). The AD/HD response-inhibition deficit as measured by the stop task: Replication with DSM-IV combined type—extension and qualification. Journal of Abnormal Child Psychology, 27, 393-402.
    O"Donnell, J. M. (1993). Effects of the beta-2 adrenergic agonist zinterol on DRL behavior and locomotor activity. Psychopharmacology, 113, 89-94.
    O"Donnell, J. M., Frith, S., & Wilkins, J. (1994). Involvement of beta-1 and beta-2 adrenergic receptors in the antidepressant-like effects of centrally administered isoproterenol. Journal of Pharmacology and Experimental Therapeutics, 271, 246-254.
    O"Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.
    Olausson, P., Jentsch, J. D., Tronson, N., Neve, R. L., Nestler, E. J., & Taylor, J. R. (2006). △FosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. Journal of Neuroscience, 26, 9196-9204.
    Onoda, K., & Sakata, S. (2006). An ERP study of temporal discrimination in rats. Behavioural Processes, 71, 235-240.
    Onoda, K., Takahashi, E., & Sakata, S. (2003). Event-related potentials in the frontal cortex, hippocampus, and cerebellum during a temporal discrimination task in rats. Cognitive Brain Research, 17, 380-387.
    Paulsen, J. S., Zimbleman, S. C., Hinton, S. C., Langbehn, C. L., Leveroni, M. L., Benjamin, M. L., Reynolds, N. C., & Rao, S. M. (2004). An fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington"s disease. American Journal of Neuroradiology, 25, 1715-1721.
    Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates. San Diego: Academic Press.
    Peterson, B. S., Skudlarski, P., Zhang, H., Gatenby, J. C., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop Word-Color Interference: evidence for cingulated subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45, 1237-1258.
    Peterson, J. D., Wolf, M. E., & White, F. J. (2003). Impaired DRL 30 performance during amphetamine withdrawal. Behavioural Brain Research, 143, 101-108.
    Popke, E. J., Fogle, C. M., & Paule, M. G. (2000). Ethanol enhances nicotine"s effects on DRL performance in rats. Pharmacology, Biochemistry and Behavior, 66, 819-826.
    Popke, E. J., Mayorga, A. J., Fogle, C. M., & Paule, M. G. (2000). Comparison of drug effects on the performance of two timing tasks in rats. Pharmacology, Biochemistry and Behavior, 67, 377-385.
    Port, R. L., Parsons, P. W., Curtis, K. S., & Seybold, K. S. (1990). Limbic networks and associative learning. Ι. Contributions to instrumental conditioning. Current Psychology: research & reviews, 9, 323-332.
    Pothuizen, H. H. J., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. European Journal of Neuroscience, 22, 2605-2616.
    Poulos, C. X., Parker, J. L., & Le, A. D. (1996). Dexfenfluramine and 8-OH-DPAT modulate impulsivity in a delay-of-reward paradigm: implications for a correspondence with alcohol consumption. Behavioural Pharmacology, 7, 395-399.
    Procyk, E., Tanaka, Y. L., & Joseph, J. P. (2000). Anterior cingulate activity during routine and non-routing sequential behaviors in humans. Nature Neuroscience, 4, 502-508.
    Raffaele, K. C., & Olton, D. S. (1988). Hippocampal and amygdaloid involvement in working memory for non-spatial stimuli. Behavioral Neuroscience, 102, 349-355.
    Ragozzino, M. E., Detrick, S., & Kesner, R. P. (1999). Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience, 19, 4585-4594.
    Ramirez, J. J., Martin, C., McQuilkin, M. L., MacDonald, K. A., Valbuena, M., & O"Cornnell, J. M. (1995). Bilateral entorhinal cortex lesions impair DRL performance in rats. Psychobiology, 23, 37-44.
    Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317-323.
    Robinson, S., Rainwater, A. J., Hnasko, T. S., & Palmiter, R. D. (2007). Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficit mice. Psychopharmacology, 191, 567-578.
    Robinson, S., Sotak, B. N., During, M. J., & Palmiter, R. D. (2006). Local dopamine production in the dorsal striatum restores goal-directed behavior in dopamine-deficient mice. Behavioral Neuroscience, 120, 196-200.
    Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 11-29.
    Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. S. (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 9, 1161-1168.
    Rushworth, M. F. S., Hadland, K. A., Gaffan, D., & Passingham, R. E. (2003). The effect of cingulated cortex lesions on task switching and working memory. Journal of Cognitive Neuroscience, 15, 338-353.
    Sakata, S., & Onoda, K. (2003). Electrophysiological correlates of interval timing. In W. H. Meck (Eds.), Functional and neural mechanisms of interval timing (pp. 339-349). Boca Raton: CRC Press LLC.
    Sanger, D. J. (1992). NMDA antagonists disrupt timing behaviour in rats. Behavioural Pharmacology, 3, 593-600.
    Saulsgiver, K. A., McClure, E. A., & Wynne, C. D. L. (2007). Effects of amphetamine on differential reinforcement of low rates of responding. Behavioural Pharmacology, 18, 119-133.
    Schoenbaum, G., & Setlow, B. (2008). Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions. Learning & Memory, 8, 134-147.
    Seamans, J. K., Floresco, S. B., & Phillips, A. G.. (1995). Functional differences between the prelimbic and anterior cingulated regions of the rat prefrontal cortex. Behavioral Neuroscience, 109, 1063-1073.
    Sergeant, J. A. (2000). The cognitive-energetic model: An empirical approach to Attention-Deficit Hyperactivity Disorder. Neuroscience and Biobehavioral Reviews, 24, 7-12.
    Sheng, M., & Greenberg, M. E. (1992). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 4, 477-485.
    Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annual Review of Neuroscience, 21, 127-148.
    Sinden, J. D., Rawlins, J. N. P., Gray, J. A., & Jarrard, L. E. (1986). Selective cytotoxic lesions of the hippocampal formation and DRL performance in rats. Behavioral Neuroscience, 100, 320-329.
    Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century.
    Smith-Roe, S. L., & Kelley, A. E. (2000). Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitve instrumental learning. Journal of Neuroscience, 20, 7737-7742.
    Solanto, M. V., Abikoff, H., Sonuga-Barke, E. J. S., Schachar, R., Logan, G. D., Wigal, T., Hechtman, L., Hinshaw, S., & Turkel, E. (2001). The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: A supplement to the NIMH multi-modal treatment study of AD/HD. Journal of Abnormal Child Psychology, 29, 215-228.
    Soubrie, P. (1986). Reconciling the role of central serotonin neurons in human and animal behaviour. Behavioral Brain Science, 9, 319-364.
    Stephens, D. N., & Voet, B. (1994). Differential effect of anxiolytic and nonanxiolytic benzodiazepine receptor ligands on performance of a differential reinforcement of low rate (DRL) schedule. Behavioural Pharmacology, 5, 4-14.
    Stevens, M. C., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2007). Funtional neural circuits for mental timekeeping. Human Brain Mapping, 28, 394-408.
    Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388-402.
    Svarnik, O. E., Alexandrov, Y. I., Gavrilov, V. V., Grinchenko, Y. V., & Anokhin, K. V. (2005). Fos expression and task-related neuronal activity in rat cerebral cortex after instrumental learning. Neuroscience, 136, 33-42.
    Swanson, L. W. (1982). A direct projection from Ammon"s horn to prefrontal cortex in the rat. Brain Research, 217, 150-154.
    Szczypka, M. S., Kwok, K., Brot, M. D., Marck, B. T., Matsumoto, A. M., Donahue, B. A., & Palmiter, R. D. (2001). Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron, 30, 819-828.
    Tanji, J., & Hoshi, E. (2001). Behavioral planning in the prefrontal cortex. Current Opinion in Neurobiology, 11, 164-170.
    Tischmeyer, W., & Grimm, R. (1999). Activation of immediate early genes and memory formation. Cellular and Molecular Life Sciences, 55, 564-574.
    Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Research, 146, 3-17.
    Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America, 95, 14494-14499.
    Walker, J. A., & Olton, D. S. (1984). Fimbria-fornix lesions impair spatial working memory but not cognitive mapping. Behavioral Neuroscience, 98, 226-242.
    Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. S. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decision. Journal of Neuroscience, 23, 6475-6479.
    Walton, M. E., & Mars, R. B. (2007). Probing human and monkey anterior cingulate cortex in variable environments. Cognitive, Affective, & Behavioral Neuroscience, 7, 413-422.
    Wiley, J. L., & Willmore, C. B. (2000). Effects of nitric oxide synthase inhibitors on timing and short-term memory in rats. Behavioural Pharmacology, 11, 421-429.
    Winstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, 26, 379-395.
    Winstanley, C. A., Theobald, D. E. H., Dalley, J. W., & Robbins, T. W. (2005). Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology, 30, 669-682.
    Wolff, M. C., & Leander, J. D. (2002). Selective serotonin reuptake inhibitors decrease impulsive behavior as measured by an adjusting delay procedure in the pigeon. Neuropsychopharmacology, 27, 421-429.
    Xavier, G. F., Oliveira-Filho, F. J. B., & Santos, A. M. G. (1999). Dentate dyrus-selective colchicine lesion and disruption of performance in spatial tasks: difficulties in “place strategy” because of a lack of flexibility in the use of environmental cues? Hippocampus, 9, 668-681.
    Young, B., & McNaughton, N. (2000). Common firing patterns of hippocampus cells in a differential reinforcement of low rates of response schedule. Journal of Neuroscience, 15, 7043-7051.
    Zermatten, A., Van der Linden, M., d"Acremont, M., Jermann, F., & Bechara, A. (2005). Impulsivity and decision making. Journal of Nervous and Mental Disease, 193, 647-650.
    Zhang, H. T., Frith, S. A., Wilkins, J., & O"Donnell, J. M. (2001). Comparison of the effects of isoproterenol administered into the hippocampus, frontal cortex, or amygdale on behavior of rats maintained by differential reinforcement of low response rate. Psychopharmacology, 159, 89-97.
    Description: 碩士
    國立政治大學
    心理學研究所
    94752002
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094752002
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200201.pdf94KbAdobe PDF2828View/Open
    200202.pdf118KbAdobe PDF2944View/Open
    200203.pdf131KbAdobe PDF2882View/Open
    200204.pdf263KbAdobe PDF22134View/Open
    200205.pdf231KbAdobe PDF21574View/Open
    200206.pdf125KbAdobe PDF21101View/Open
    200207.pdf212KbAdobe PDF21516View/Open
    200208.pdf216KbAdobe PDF21045View/Open
    200209.pdf178KbAdobe PDF21037View/Open
    200210.pdf102KbAdobe PDF2947View/Open
    200211.pdf4019KbAdobe PDF21100View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback